Tag Archives: repair

How To Wash Your Baseball Caps Easily Without Hurting Them

Folks, as my wife will tell you, I like my baseball-style caps and seem to have accumulated a ton of them over the years. With that said, there seem to be just a handful of them that I wear all the time. The problem was that they got pretty dirty with use so what should one do?

I tried putting one in the clothes washer once and ruined my favorite hat at the time. So, since I didn’t have a way to wash my hats, I wound up having piles of “wearable in public” hats, work hats that look bad but feel good and “oh man this is filthy but I don’t want to throw it away in case I ever figure out how to clean it” hats. In the back of my head, I knew I wanted to find a way to wash them but never seemed to find the time.

How To Clean A Ball Cap

One quick comment – what I am about to tell you works on modern caps with plastic liners in the brim (the part that sticks out). Prior to 1983-ish, the liners were often cardboard and getting them wet would ruin them. If you flick the brim of an old hat and it sounds hollow, it’s probably cardboard and you should not do what I am about to outline. All of my hats are modern and have plastic liners.

One day while reading, I ran across the solution and it was so easy I was skeptical that it could work. Not only did it work, but it worked amazingly well. The near miracle fix is to hand wash your hats so they don’t get beat up. You soak your hats in a soapy solution using HE clothes washing soap. In our case, we use Tide for our clothes and that’s what I used. Note, don’t use a detergent with bleach or your hats will fade.

I took a bucket, poured in about a 1/4-1/3 cup of Tide HE and then just over a gallon of warm water. I took my dirtiest “what do I have to lose” hats and let them soak for a few hours, came in and pushed them around in the water to break things up and then let them sit another few hours – these hats were incredibly dirty folks. I was working outside and forgot about the first test batch and they probably soaked for 6-8 hours at least with no ill effects.

There are two hats in there with this load. The first time out I probably had six really dirty hats in there.

With everything wet, I really was just hoping they were done and rinsed them 2-3 times. I then hung them to drip dry in our shower. I’ve since found that even a small fan pointed at the hats speeds up drying dramatically.

Dripping dry – a small fan pointed in their direction dried these two in just a few hours.

The results were remarkable. Oil and sweat marks largely disappeared. Detergents are pretty remarkable – these days, they include enzymes to help break things down and they probably played a role on cleaning the hats so well. Tide Original, which we have, includes three enzymes – amaylase (starch based stains), mannanase (vegetable based stains) and protease (for protein based stains). Seriously, some of the hats were horribly dirty and now they are clean!!

I’ve now got all my hats back in service and they look great. This means my favorite work and shooting hats are back in business! I’m going to guess I’ve done about four batches of hats – maybe a bit over a dozen or so and 3-4 of them have been washed twice. In other words, I’ve done this a number of times and it really seems to work well.

Now that I know how easy it is, I can routinely clean my hats. I’m really happy with the results and hope this helps you out.

By the way, here are some links to what others did so you have some other perspectives to consider:


If you find this post useful, please share the link on Facebook, with your friends, etc. Your support is much appreciated and if you have any feedback, please email me at info@roninsgrips.com. Please note that for links to other websites, I may be paid via an affiliate program such as Avantlink, Impact, Amazon and eBay.


How To Run Oil-Lubricated Air Compressors in Cold Weather & Not Trip Breakers

Folks, my shop is unheated and the space where my 60 gallon oil lubricated Ingersoll Rand (IR) 2340L5-V sits can get well below freezing – sometimes even well under 20F. That presents a challenge because the lubricating oil gets thicker as it gets colder and this puts more and more of a load on the motor to start. What usually results is a tripped breaker -I know my 30amp breaker would trip regularly until I took some corrective actions.

One option you can run with is to run variable weight thinner synthetic oil in the winter. I don’t want to run into issues with my pump so I stick with IR straight weight compressor oil so I’m not really keen on doing that. There are guys who will disagree with me and that’s why I point out the option.

The solution I put in place works great. I simply put two Kat’s 24025 25 watt heating pads that measure 1″x5″ on each side of my pump level next to the oil reservoir. These heaters were designed to warm fluid reservoirs including those with oil. I’ve used a ton of them over the years for warming pressure tanks and what have you and have not had one fail yet. My oldest units are probably 3-5 years old and no problems — I just use them during the Winter.

In terms of heating my compressor’s pump, I just run mine non-stop in the Winter but if you’d really rather only run them when it is at or below freezing, there are thermal power plug adapters that only turn on when it is that cold. Note, at 25 watts they do not heat fast. If your pump is real cold it could take it a while to get up to an acceptable temperature. That’s one reason why I just let them run and I can turn the compressor off independent of the heaters.

Along with the little 1×5 units, I use one larger 4×5 Kat’s 24100 pad at the bottom of my compressor to allow me to drain the condensate that would otherwise freeze. I do not run that non-stop as it is 100 watts. It’s on a thermally switched outlet that turns on at 35F and off at 45F. Yeah, it may run more than I need it to but I haven’t invested in a better controller yet for that part. I will list the digital controller I plan on getting some day so you can decide.

Installing is about as easy as it can get. The Kat’s units have a self-adhesive back and must be installed before you plug them in or you will ruin them. Clean the surface of oil and dust, peel the cover off the adhesive, stock the heater on and wait the prescribed time then plug it in and it warms up. Note, I have only used them on steel surfaces. They get hot and I would not be inclined to install them on plastic for example.

Kat’s products are made by Five Star Manufacturing and they have a ton of different products for different applications. Click here for their website.

This is the Kat’s 24100 4×5 heater that I have at the bottom of my compressor to keep the condensate from freezing.
This is the Farm Innovations TC-3 that governs when the 4×5 heater turns on and off. I’ve been using it two years now without any trouble,

The setup works great. No more tripping breakers due to thick oil caused by cold weather. I hope it helps you out.


If you find this post useful, please share the link on Facebook, with your friends, etc. Your support is much appreciated and if you have any feedback, please email me at info@roninsgrips.com. Please note that for links to other websites, I may be paid via an affiliate program such as Avantlink, Impact, Amazon and eBay.


Replacing the Pressure Switch on an Ingersoll Rand 2340L5-V Air Compressor

I live in a rural area and wind up doing a lot of my own repairs. About 2-3 years ago I invested in a 60 gallon Ingersoll Rand (IR) 2340L5-V air compressor which is their entry-level “Value Line” of industrial compressors. In hindsight, had I known more about “value” meaning “we made it cheaper”, I would not have made the purchase. Yes, it’s held up way better than my consumer air compressors but a buddy’s big Quincy compressor rocks and that is another story.

At any rate, I use a ton of compressed air for pressurizing my casting tanks and running all kinds of air tools. One of the reasons I went with the 2340L5-V was that I kept burning out the little 30 gallon consumer compressors. Failure is a big deal for me because when a compressor goes down in my shop, almost all work stops.

At any rate, I knew something was going on with my compressor before it stopped running completely. At the end of the air fill cycle that brings the tank back up to pressure, the switch would shut off but then there wasn’t any bleed down to relieve the pressure on the pump. This meant that the compressor may or may not restart without tripping the 30A breaker and it got worse with time. After this got really annoying, I decided it was time to fix it.

I did some reading and it turned out there were two likely culprits – either the check valve was leaking air back or the pressure switch was failing. I had problems with the check valve on other compressors so I jumped to conclusions and replaced that first. It didn’t fix the problem. Argh.

This is the 23474653-R pressure switch. It is just the switch and does not include the gauge, blow off valve or bleed off line (unloader) that you see.

So that left the pressure switch and this is where things just went sideways and I got frustrated. In searching online and calling the parts department, IR’s own parts department sold me the wrong switch and I was down for almost a week. So you don’t go nuts, you must make sure people know if you have the 2340L5 or the 2340L5-V because their pressure switches are different. You can make the better switch from the 2340L5 work but it will take a bit of re-plumbing the lines to do so. I may actually try that some day.

Next comment, do not go with the model number on the pump housing itself. The model number you need is printed on the big silver decal on the tank – not on the pump. The pump will say “2340” but that is not your specific model.

Right there outlined in yellow is the model number you must go by. 2340L5-V in my case.

For whatever reason, IR parts sold me the wrong part even though I asked the fellow to confirm it was right. So, frustrated and with my compressor down, more discussions were held and web searches done and the correct part for the 2340L5-V’s pressure switch is a 23474653-R. Interestingly enough, Tractor and Supply Company (TSC) is an IR dealer and the local store had one of these switches on the retail shelf. This gives you an idea that they are viewed as a wear item if a retailer is going to tie up the money and shelf space to stock one. It was $79.99 and they only had one so I called and confirmed with the clerk that they had one before I drove over. I’ve had way too many situations where a website said “X” was in inventory and when I went to the store, it was not so I try and confirm now. Thankfully, I drove to the store and picked it up.

I removed the cover already but this is what comes in the box. You will need to move your gauge, blow off valve, bleed down line, rear pipe plug and electrical lines over from the old switch to the new one.

Comments On The Swap

So, when it comes to the repair, it’s a fairly easy swap. I took a few photos from different angles to make sure I didn’t forget anything plus I labeled anything that might get turned around. Gone are the days when I try to keep it all in my head. Between my age and interruptions, I find it way too easy to forget things.

Two real important safety comments. Fully drain the compressor – in other words let all of the air out and open the floor drain. Why open the floor drain? Because it’s your double check that it is empty.

Second, please make sure the power is cut. I use a heavy stove/appliance cord going to a wall outlet. I both cut the breaker and unplug the cord. Why do both? It’s your double-check. If you are in a multiperson environment, follow lock out procedures.

Note the top two poles are the hot legs coming from the wall.
Folks when you go to remove the blead-off / unloader line, it is held on by a compression nut fitting. Let me give you a piece of hard won advice – use a flare nut wrench if you can to support as many sides of the nut as you can or worst case use a proper fitting box end wrench. Don’t ever use an adjustable wrench or you will likely round the corners off the nut as the jaws of the wrench give. Now IT does give you a new nut and that is plain 1/4″ copper tube if you screw up bad but you can re-use that whole piece if you are careful with removal and re-installation.
Okay so the top two terminals are the hot legs from the wall. The middle set of terminals are the hot legs going to motor. Down on the bottom you have the neutral from the extension cord and the green/neutral going to the motor. These are thick wires in a tight space so be careful working things into position.
Here’s an odd little thing I encountered. The pipe plug that goes in one unused position of the switch is actually 10mm. Why? I have no idea. The 10mm fit best so I ran with it. Everything else was SAE. For example, the housing itself that you see just above the wrench uses a 3/4″ wrench.
Use pipe thread tape on all fittings and properly support the pipes and what not so the right things you care about are moving in the right direction. For example, I used a pipe wrench on this nipple to keep it from turning while I both removed the old pressure switch and installed a new one.
Lesson learned, stay organized. That is a small magnetic tray. I cleaned all fittings and installed new pipe thread tape before reinstalling them.

Bottom line is that I installed the new pressure switch and the compressor proper bled off the pressure from the pump after cycling. In talking to IR parts they mentioned to me that this is the most common reason for the bleed down not to happen in my series of compressor – not the check valve. I believe that now. The pressure switch seems cheep and really strikes me as a consumable part now. Lesson learned.

By the way, I found out during the actual swap that IR printed the part number on the inside of the switch cover. Why hidden inside? If they had it on the outside, then this would have all been way simpler.

Also, next time my compressor stops unloading, I am going to order one of these switches vs. waiting for failure and having to scramble. It’s my fault for putting it off but I had a ton of other things going on and eventually it bit me.

I hope this helps you out as well. Bottom line, if you have a 2340L5-V then the correct pressure switch you need to order is the 23474653-R. That way you can avoid the drama I ran into.

One last shot of the right pressure switch box with the part number on the top right 🙂

If you find this post useful, please share the link on Facebook, with your friends, etc. Your support is much appreciated and if you have any feedback, please email me at info@roninsgrips.com. Please note that for links to other websites, I may be paid via an affiliate program such as Avantlink, Impact, Amazon and eBay.


Here are switch listings on eBay. Be careful that it is a real IR part or a quality replacement vs. an inferior knock off that will not hold up.


The Absolute Best Shoe and Boot Glue That I have Found!

Folks, I’ve found what I think is the best glue for shoe and boot repair. Yeah, I really mean it. It’s called “Shoe-Fix Glue” and is marketed by a small firm called NJoy Distributors and only sold direct or via Amazon. Let me give you a bit of background first.

I’ve tried to fix tons of shoes and boots over the years with varying success using Goop and Shoe Goo amongst others. The two challenges were trying to clamp the shoe or boot while trying without making the profile change once dried and also not using so much glue that it altered the feeling of the shoe. Nothing happened fast either – you had to wait overnight while the stuff set up.

So, I did some digging on Amazon a few weeks back and found this stuff. What really caught my eye were the amazingly high number of positive reviews:

At the time of my writing this blog, there are 845 reviews with a score of 4.5 out of 5. 86% of reviewers give it either 4 or 5 stars. That’s pretty good and I figured I could afford to give it a shot.

I had both the sneakers I wear around home that had the bottom tread coming off and my daughter’s favorite boots had the sole separating from the upper that I could experiment with.

NJoy does have a nice tips page with some videos that I checked out [click here for that] and it largely comes down to making sure the surfaces are clean, dry and then holding them together for 30-45 seconds while the rubberized / flexible cyanoacrylate adhesive cures.

What they are using is the interesting part – they came up with a flexible cyanoacrylate adhesive – a flexible “super glue”. This surprised me more than anything else. Normally I find that the “super glue” class of adhesives as rigid and intolerant of shocks and flexing. This stuff smells as you’d expect when applying it with a medium viscosity meaning it appears to be a little thicker than water and this helps it attempt to balance the need to soak in and establish a bond with the need to not run everywhere.

On their website, they report that their Grandfather Ed started the shoe business after WWII and ran it for 20 years. He then had two sons Dean and John. John is the one who came up with the formula and started bottling the current formula in March 2015 [click here if you want to read more]. By the way, you’ll notice they sell stuff for boots and shoes and this is just marketing so that people searching for boot glue or shoe glue will find the item – it’s the same formula and they are very upfront in telling people this.

If you are wondering about how my tennis shoes and daughter’s boot turned out – the results were amazing. The stuff really is easy to apply and has held up now for two weeks with heavy use. My daughter is a college student and walks a ton every day in those boots in the Michigan winter.

This is her boot with the sole reattached – it was literally more than half the way off the upper. I ran a bead of Shoe-Fix glue around the perimeter of the rubber sole and held the two together with my hands. I let go after about a minute and the repair seemed solid. They’ve held up for her even with a ton of walking as a college student.
On my “work around the house” shoes, the dark tread was separating from the middle foam wedge in a number of places. I’d apply some glue in each spot and hold them for 45-60 seconds – done. All the discolored stuff is remnants of Shoe Goo that I did need to clear away in a few places. Shoe-Fix is clear.

I was so impressed by Shoe-Fix Glue that I figured I really needed to write a post and share the info. It really does what it claims and I am intrigued enough to want to try it on other projects that aren’t footwear related where I need a fast flexible bond. In the mean time, I will always have 1-2 tubes of this stuff available for impromptu shoe and boot repair.

2/17/2020 Update: I wrote the original post on 2/7/20 and probably started using this glue maybe 2-3 weeks prior. I’m very pleased to report that all the shoes and boots fixed thus far are still standing up to everyday use. None of the bonds have let go thus far.


If you find this post useful, please share the link on Facebook, with your friends, etc. Your support is much appreciated and if you have any feedback, please email me at info@roninsgrips.com. Please note that for links to other websites, I may be paid via an affiliate program such as Avantlink, Impact, Amazon and eBay.


Videos: How to Diagnose Faulty 2008 Toyota Highlander Hood Latch Switch Causing Intermittent Alarm Problems Plus Replacing the Micro Switch

Okay, while researching what to do with my 2008 Toyota Highlander’s flaky alarm, I ran across some good videos you can watch on how to diagnose the switch and even how to replace the microswitch. As for me, I wrote up how I bypassed the sensor by creating a loopback plug from the old sensor’s wire. My approach still allows the rest of the alarm system to work just fine and can be done in less than an hour with little to no cost. With that said, let’s take a look at these really well done videos that helped me think out my approach – especially the first one on diagnosing the switch.

Diagnosing the Switch

The following is the best video I found on diagnosing the problem and he even disassembles the latch to show you what is going on in detail – it’s very well done. This video helped me figure out my approach and kudos to Ozzstar for making it:

If You Want To Replace the Microswitch

This next video is really well done and is specific to the 2008 Highlander. He ordered the same Panasonic automotive grade micro switch that Toyota used: ABS1413409 from Digikey.

I hope this helps you out.



If you find this post useful, please share the link on Facebook, with your friends, etc. Your support is much appreciated and if you have any feedback, please email me at info@roninsgrips.com. Please note that for links to other websites, I may be paid via an affiliate program such as Avantlink, Impact, Amazon and eBay.


Easy & Cheap Solution for 2008 Toyota Highlander Hood Latch Sensor Switch Causing Faulty Alarms: Make A Loopback Plug

We recently became the new owners of a 2008 Toyota Highlander. It was in great shape and I thought we got a pretty good deal on it. The previous owner disclosed to us that the hood alarm switch was flaky and the car alarm would go off randomly.

After we bought the Highlander and returned home I did some research that night. There is in integral microswitch in the hood latch assembly that detects if the hood is open or closed. The alarm system will not arm if it detects that the hood is open and it will sound an alarm if someone tries to open the hood. Uhm… ok. My first thought was “you can only open it from the inside lever that is protected by the door alarms so why have this one?”

Unfortunately, or fortunately depending on your perspective, the switch is a known problem. It’s also one of the rare times where I will say Toyota did a bad design. Putting a basic microswitch in the front of a car where it will get wet all the time and corrode, not to mention the impacts and grease/oil from the latch itself, is not really that good of an idea — at least not to me.

After reading and watching videos, it seemed like there were three options:

  • Replace the whole hood latch assembly that includes the sensor. Third party, these latch assemblies were about $56 on Amazon and $50-60 on eBay. Original Toyota would be higher, of course. Pro: It is pretty easy to remove the assembly and install this one. Con: It’s a relatively expensive and will fail sooner or later unless someone fixed the switch design and sealed it better.
  • Replace just the microswitch. You can get the unit real cheap from Digikey and other suppliers plus there are Youtube videos that show you what to do. The previous owner did this and it worked for about two years he said. Pro: Real cheap (under $10 including shipping). Cons: Takes time and will not last without figuring out some better way to seal the original design.
  • Simply bypass the switch. As mentioned earlier – you can’t open the hood from the outside so what are the odds that someone will successfully break into the car and then open the hood without setting off the alarm? The risk is real low – low enough for me to go with this option. Pro: Easiest of all and is a permanent solution. Con: The hood alarm sensor will no longer work. This is the one I went with.

I’d like to point out that just unplugging the sensor is not an option. Doing that will make the computer think the hood is open and the car alarm will not arm at all. This means you must pick one of the three options listed above. I opted for the last one – I bypassed the sensor by creating a loopback plug – a fancy term meaning I joined the input and output wires together thus making it look like the switch was always closed so the computer would think the hood was closed regardless of whether it was or not.

If you’d like to learn more about diagnosing the problem, seeing how to remove the latch and/or how to replace the microswitch, click here.

What I want to do next is walk you through what I did. If you are not comfortable with basic wiring, I’d recommend against your trying this just to be up front. Always ask yourself if you can reverse what you are about to do or can you recover if something goes wrong – if the answer is “no”, then don’t do it. For example, don’t cut wires off right next to a fitting – leave yourself some pigtails in case you need to reconnect them.

One last comment – these directions are just based on my 2008 Highlander. Different years and models may not be like this. Research your vehicle before doing anything like this.

Bypassing the Sensor

So, to bypass the sensor we just need to create a circuit that normally exists when the switch is closed. First, I needed to get a better look at the location of the wiring so the cover needed to come off.

The plastic cover between the grill and the frame needs to come off. It is held in place by Toyota push-type retaining clips and two 10mm screws. The screws are to the front on the left and right sides. Note that two of the clips on the right side are bigger than the others – this will help you with reassembly later.
I use a small flat screw driver to pop the middle part up. You then grab hold of that, lift up and the clip comes right out.
Just remove the clips and then the plastic cover simply lifts off. I found one more that anchors the grille in the middle of the grille vertically and I removed it. That gave me ample room to work and I did not need to remove the grille given what I planned to do.

I did not take as many photos as I should have so let me explain. With the plastic cover off and the middle anchor clip removed, I had plenty of access to the switch and wiring to see what to do. The wire assembly runs from the hood latch – and there is only one wire – do not pick the hood cable used to open the hood. The wire runs from a small switch in the latch assembly and then plugs into a connector shortly below it.

I inserted a small blade screw driver to release the plug from the socket. To be safe, make sure you confirm the wires that you plan to cut lead up to the sensor and are *not* the wires going to the harness / wiring loom.

Why care? Because if you cut the wires on the sensor side and connect them together, you can easily replace the hood latch assembly and go back to having a sensor if you want. However, if you cut the wiring loom, it’s gone. You can manually splice in but it simply is not an elegant approach.

Note I am saying wires and when you look at the plug it looks like just one black wire. What you are seeing is the insulation tube that is black. Inside are two thin green wires that run from the plug to the sensor switch.

I’ll not get awards for artwork but hopefully this will give you an idea. When I faced the front of my Highlander, the wiring from the sensor was on the right hand side. You need to confirm this just in case. It is the wire to the sensor switch wire that you want to cut and not the wiring from the harness. On my 2008 Highlander, the harness wiring was on the left.

Once I was certain which wire to cut, I reached in with some snips and cut the wire leaving a couple of inches to work with. DO NOT CUT THE WIRES FLUSH TO THE PLUG!! You need a short length of the wires to connect together to make the circuit loop back.

To make work easier, I took the short wire with the plug on it and worked at a bench where everything was handy, I stripped a bit off the end of each wire, twisted the bare wires together, soldered them, bent them over the small wire pigtail and then used heat shrink tubing and electrical tape to secure everything. Total overkill but I never wanted to bother with this again.

Here’s the finished result. The front of the car is to the left. Part of the hood latch spring is to the upper right and we are looking down at the newly made loopback plug. As far as the alarm system is concerned, the hood is closed. The red color is the heat shrink tube I had on hand. I folded the heat shrink tubing over at the end and then applied electrical tape to seal it.

I installed the newly created loopback plug back into the socket. I then tested the system by turning the alarm on with the key fob, putting the key fob out of signal range in the garage and waited for the system arm. Once the alarm indicator light went solid on the dash, I simply reached in through the open window and tried to open the door from the inside and the alarm went off. Yeah, I had to run back to that fob to shut it off 🙂

If the system thought the hood was open, it would never have armed by the way. That’s why you can’t just unplug the switch. I then reinstalled the plastic cover by installing the clips and then pushing the middle piece down to lock it in place. By the way, remember that the right two clips are bigger than the others. The two 10mm screws went back in with a dab of non-seize on each just in case they ever need to come out again.

That was it – the alarm is happily armed and protecting the Highlander as I write this and not one single false alarm since. I hope this helps you out.

5/23/2020 Update: This has worked great for me. Not one single problem since.


If you find this post useful, please share the link on Facebook, with your friends, etc. Your support is much appreciated and if you have any feedback, please email me at info@roninsgrips.com. Please note that for links to other websites, I may be paid via an affiliate program such as Avantlink, Impact, Amazon and eBay.


These are the Correct Weatherstripping Clips for 1996 Toyota Landcruisers (80-series)

I did some bodywork on my 1996 Landcruiser (an 80-series Landcruiser) this past summer and had to replace the weatherstripping clips on the bottom of the driver side door. I did some digging and found that these clips are the correct size (5mm with a 15mm head) and they worked great for me. The one guy complains that these are green so he only scored it three stars. My originals were a pinkish color so green didn’t matter to me at all plus once installed, you can’t see them.

I popped the remaining originals out with a removal tool. If you don’t have one, they make a world of difference in the removal of clips. In a truck this old, I try to replace old plastic clips when I can as often find them to be brittle and either break during removal or re-insertion.

Here is a clip removal tool. The green clips under it are the brand new replacement units.

The tool you see in the above photo came with the following replacement Toyota Trim Clips package that has helped me out a number of times such as securing drooping engine bay plastic shields on a 2002 Toyota Camry.

Here were the remaining original clips. Note the lovely pink-ish color thus I really didn’t mind what colors the originals were as long as they worked.

Here is the end result – I worked the clips into each hole in the weather stripping and then simply pushed them into the body holes. I think I installed a total of five to six clips. The drooping problem was solved.

The heads securely fit in the holes in the weather stripping and into the body.
No more drooping weatherstripping!

In Summary

These clips worked great. I just did this post to try and save anyone trying to find clips specifically for an 80 series Landcruiser.


If you find this post useful, please share the link on Facebook, with your friends, etc. Your support is much appreciated and if you have any feedback, please email me at info@roninsgrips.com. Please note that for links to other websites, I may be paid via an affiliate program such as Avantlink, Impact, Amazon and eBay.


Did you know most consumer vehicle undercoatings are rip offs?

We recently bought a new van and I wanted to undercoat it so it would last — being old school that was the first thing I thought of anyways.  The next was to do some searching around with Google about undercoatings so I could get the best product to use.  You know what I found out?  When most cars and trucks are made, the manufacturers do a ton of stuff now to prevent corrosion straight from the factory – so much so that you may find it hard pressed to find a shop that even does undercoating/rust proofing any more.  The car companies have improved their alloys, finishes and even learned not to leave exposed lips for mud to settle in to and sit – think about how the old wheel wells had the reinforcing lip all the way around that dirt/mud could sit in and hold salty water or even just water against the metal – of course it would rust.  So now you look in to wheel wells and through one method or another that flange is either not there or protected.

So I want to share some things I learned.  First, rubberized spray on undercoatings often caused more problems than they solved.  Now, you may be wondering why – I know I did.  You see, it is a spay on finish the adheres to whatever surface it can stick to – paint, rubber, metal, dirt, etc.  Over time, that undercoating develops small holes from stuff hitting it and then a pocket starts to form, salty water enters in and is held against the very steel it is trying to protect!  So to make a long story short, after reading tons of posts about the various spray on rubber undercoatings one must conclude they are not worth investing in any longer.

Second, rust proofing sounds great but there really is no such thing.  You are delaying the inevitable if we are talking about steel and salt water – eventually something is going to rust.

Okay, enough doom and gloonm, let’s say you live in a state, like Michigan, where they salt the heck out of the roads in the winter.  What do you do to protect new cars even more than what the factory did *or* you want to try and save older vehicles even if they have started to rust?  The answer, interestingly enough, was developed long ago – Fluid Film.  Eureka Chemical Company, yes that really is their name – started in the 1940s when they developed a product with an unlikely source to help the Navy prevent corrosion – the not-so-secret ingredient is lanolin from sheep. If you want to read the whole story, click here.

Let me cut to the chase – the reason this stuff works is that it oozes and seals itself if nicked.  DoD, NASA, Coast Guard, Delta and others are still using this stuff!  After doing a lot of reading, I bought a five gallon pail off Amazon, an applicator gun and a pail pump dispenser.  They sell an aerosol can version but I really don’t have much experience with it but am a bit leery of it because the liquid is so thin that comes out compared to what I can spray with the applicator gun.

This is my second year using it on our vehicles and it almost makes it a few months before you can tell it has dried out / faded.  In other words, it doesn’t quite make it the whole winter. I get rid of looser dirt by spraying it down, let it try and go to town spraying this stuff on everything – even the exhaust as it will just bake off after the first time it gets good and hot.

Honestly, I think the FuildFilm helps – our newest car after our van is a 2002 Camry and I spray the heck out of it and our other older cars (the oldest is a 1992 Corolla) and my old 1996 Land Cruiser.  I go through about a quart per car/truck liberally applying it real thick all over the under carriage.  I also spray door hinges, locks and hood latch.  The stuff smells funny for the first day or so but seems to really do the trick.  I just finished putting it on our vehicles for the second year.  I’m about half way through the five gallon pail so if you want to test it out some, you could start with a gallon pail – that would do 4-6 cars or trucks depending on how thick you apply it.

So, thought I would pass along what I learned – don’t bother with rubberized undercoatings and definitely check out FluidFilm.

Note, my local Autozone also sells the below aerosol cans.  I really do not know how long it will protect what you spray it on.  It is way, way thinner than the stuff that comes in the pails.


If you find this post useful, please share the link on Facebook, with your friends, etc. Your support is much appreciated and if you have any feedback, please email me at info@roninsgrips.com. Please note that for links to other websites, I may be paid via an affiliate program such as Avantlink, Impact, Amazon and eBay.