Tag Archives: AI

Enter the Battleverse: China’s Pursuit of Intelligentized Warfare in the Metaverse

This report provides a comprehensive intelligence assessment of the People’s Republic of China’s (PRC) strategic endeavor to develop a military-specific metaverse, termed the “battleverse” (战场元宇宙). Analysis of authoritative Chinese military-technical literature and procurement data indicates that this initiative is not a speculative or isolated technological pursuit, but a core component of the People’s Liberation Army’s (PLA) future warfighting doctrine and a key project within the PRC’s national “Digital China” (数字中国) grand strategy. The battleverse is the logical and necessary culmination of the PLA’s concept of “Intelligentized Warfare” (智能化战争), the designated successor to modern “informatized” conflict.

The PLA envisions the battleverse as a persistent, high-fidelity, virtual-real fused environment that will fundamentally revolutionize military operations across all domains. Its primary purpose is to enable the PLA to achieve “cognitive dominance” over an adversary by seamlessly integrating the physical, virtual, and cognitive (“brain battlefield”) dimensions of conflict. While the comprehensive battleverse remains a future objective, its foundational technologies—particularly Artificial Intelligence (AI) and Digital Twins—are being actively researched, developed, and procured. The most mature applications are currently in advanced training and simulation, where VR/AR systems and AI-driven “Blue Army” adversaries are enhancing training realism and accelerating tactical development.

Concurrently, the PLA is aggressively exploring advanced conceptual frameworks for “Meta-War,” a new form of conflict waged within and through the battleverse. These concepts include combat conducted by virtual avatars, by remotely operated robotic “simulacrums,” and by human soldiers who exist as “dual entities” in both the physical and virtual worlds. This theoretical work, combined with tangible technological progress, presents a significant long-term challenge to the military-technological superiority of the United States and its allies. The PLA’s approach is distinguished by its top-down, doctrine-driven integration and its exploration of higher levels of AI-driven autonomy, creating a potential divergence in the character of future warfare.

This report assesses the strategic drivers behind the battleverse, deconstructs its conceptual architecture, details its current and future applications, provides a comparative analysis with U.S. efforts, and evaluates the associated challenges and strategic implications. The PLA’s pursuit of the battleverse signals a determined effort to master a new form of warfare, one that could provide significant asymmetric advantages in a future conflict, particularly in a scenario involving Taiwan.

I. The Strategic Imperative: From Informatization to Intelligentization

The PLA’s ambition to construct a battleverse is not an ad-hoc reaction to a technological trend. It is the product of a deliberate, decades-long strategic modernization effort, guided by a clear doctrinal vision for the future of warfare and supported by a whole-of-nation grand strategy. Understanding this context is critical to appreciating the depth and seriousness of the battleverse initiative.

The PLA’s Three-Step Modernization Framework

The PLA’s contemporary modernization is structured around a three-phase strategic framework articulated by senior leadership, including PRC President Xi Jinping.1 These overlapping phases are mechanization, informatization, and intelligentization.1

  • Mechanization (机械化), the process of incorporating advanced machinery, vehicles, and conventional platforms, was the primary focus through the early 21st century and was intended to be largely completed by 2020.1
  • Informatization (信息化), the current phase, involves the introduction of networks, information systems, and data into all facets of military operations, from command and control (C2) and intelligence, surveillance, and reconnaissance (ISR) to cyber operations.1
  • Intelligentization (智能化), first formally mentioned in 2019, is the PLA’s vision for the future. While still pursuing the goals of informatization, the PLA is doctrinally and technologically pivoting toward this next phase, which it sees as a new Revolution in Military Affairs.1 Intelligentization is defined by the transformative impact of emerging technologies—specifically Artificial Intelligence (AI), big data, quantum computing, virtual and augmented reality (VR/AR), autonomous systems, and the Internet of Things (IoT)—on 21st-century warfare.1

Recent PLA writings explicitly describe the culmination of this intelligentization phase as leading to “Metaverse War” or “Meta-War,” making the battleverse a defining feature of this future conflict paradigm.1

Defining “Intelligentized Warfare” (智能化战争)

Intelligentized warfare is the PLA’s core warfighting theory for the 21st century. It represents a fundamental shift in the character of conflict, driven primarily by the maturation of AI.3 PLA theorists draw a clear distinction between this new stage and its predecessors based on the human functions they augment. Whereas mechanized warfare enhanced the physical capabilities of the soldier—their “hands and feet”—and informatized warfare enhanced their sensory capabilities—their “ears and eyes”—intelligentized warfare is conceived as enhancing the cognitive function of the commander and the force itself—the “brain”.6 This enhancement is to be achieved through advanced brain-computer interaction and AI-human teaming.6

The central tenets of this doctrine reveal why a battleverse is not merely useful, but essential:

  • Shift to Cognitive Dominance: The primary objective in intelligentized warfare shifts from achieving information superiority to seizing “cognitive dominance” (制智权).6 This is a more profound concept, focused on fundamentally disrupting, degrading, and manipulating the adversary’s decision-making processes. The goal is to render the opponent cognitively paralyzed, effectively turning them into an “idiot” in the battlespace, unable to process information or make sound judgments.6
  • Expansion of the Battlefield: The domains of conflict expand beyond the traditional physical realms of land, sea, air, and space. Intelligentized warfare explicitly incorporates the virtual space and, most critically, the “cognitive domain” or “brain battlefield” (头脑战场) of commanders, soldiers, and even national leaders as primary arenas for confrontation.1 Victory in the virtual and cognitive spaces is seen as a prerequisite for victory in the physical world.6

This doctrinal framework, with its focus on cognitive paralysis and the fusion of physical and non-physical domains, creates a clear and compelling military requirement for a persistent, integrated, virtual-real environment. The PLA is not simply adopting metaverse technology because it is available; it is pursuing the technology because its pre-existing theory of victory demands it. This doctrinal pull, rather than a simple technological push, indicates a far more deliberate and strategically integrated approach, suggesting that the battleverse concept is deeply embedded in the PLA’s long-term institutional planning.

Linkage to the “Digital China” Grand Strategy

The PLA’s military ambitions are inextricably linked to and enabled by a broader national strategy. The battleverse initiative is explicitly framed within PLA literature as a central component of the PRC’s societal transformation under the “Digital China” (数字中国) grand strategy.1 Described as the world’s first “digital grand strategy,” this whole-of-nation effort is personally championed by Xi Jinping and aims to “win the future” by achieving comprehensive digital supremacy.1

The “Digital China” strategy, which has roots in regional initiatives like “Digital Fujian” and “Digital Zhejiang” that Xi oversaw as a local leader, aims for the complete digital transformation of the PRC’s economy, governance, and society.8 In this context, the metaverse is seen as the next evolutionary stage of the internet and a critical new frontier for national power.9 By leading in its development, Beijing seeks to achieve several national objectives:

  • Technological Self-Reliance: Reduce dependency on foreign technology and establish “first-mover advantages” in a critical future industry.9
  • Economic Growth: Dominate what is expected to be a multi-trillion-dollar global market, further fueling China’s digital economy.9
  • Norm Shaping: Position the PRC to guide the development of international norms, standards, and governance structures for the metaverse.9
  • Sovereignty and Control: Extend state sovereignty into the virtual domain, ensuring the digital “spiritual home” of its citizens operates according to the Chinese Communist Party’s (CCP) principles.9

This national-level strategic alignment creates a powerful symbiotic relationship, a prime example of the PRC’s Military-Civil Fusion (军民融合) strategy. The PLA’s demanding requirements for a high-fidelity, secure, AI-driven battleverse provide a clear strategic direction and a lucrative market for China’s civilian tech sector, driving national innovation in critical areas like AI, 5G, VR hardware, and advanced computing.11 In turn, the rapid growth of the civilian tech sector, such as China’s massive domestic VR market (estimated at 44% of the global market by late 2020), provides the PLA with a broad, resilient, and innovative industrial and R&D base from which to draw technology and talent.11 This whole-of-nation symbiosis provides a formidable strategic tailwind for the battleverse project, granting it a level of national priority and resource allocation that a purely military-siloed program could not achieve.

II. Deconstructing the Battleverse: Concept, Architecture, and Key Technologies

The PLA’s concept of the battleverse has evolved rapidly from a nascent idea into a sophisticated theoretical construct for future warfare. It is envisioned not as a single piece of software, but as a comprehensive military ecosystem with a specific architecture and a foundation built on the convergence of several key emerging technologies.

Defining the “Battleverse” (战场元宇宙)

The term “battleverse” (战场元宇宙) first entered the PLA’s public discourse in a November 2021 article in the official PLA Daily.1 Initially, the concept was framed in a defensive, soft-power context. The article proposed using the metaverse to create immersive reconstructions of historical battles to vividly depict the horrors of war, thereby deterring conflict and stimulating a desire for peace among the civilian population.1

This narrative, however, pivoted with remarkable speed. Within a matter of months, by early 2022, the discussion in official military media had shifted decisively toward building a separate, secure, and highly militarized metaverse designed explicitly to win future intelligentized wars.1 This rapid evolution from a public-facing deterrence tool to a core warfighting concept is significant. Such a fundamental shift in the official military newspaper is unlikely to be accidental; it strongly suggests that an internal consensus was reached at a high level to prioritize and accelerate the development of the metaverse as a primary warfighting domain. The initial “deterrence” framing may have served as strategic misdirection for external audiences, or it may reflect a genuine but quickly superseded initial thought.

In its current conception, the military metaverse is defined as a new and comprehensive military ecosystem that integrates the virtual and real worlds.17 It is distinguished from its civilian counterparts by a set of unique military requirements, including:

  • High Security: The system must handle highly classified information, requiring robust security protocols far beyond those of commercial platforms.17
  • High Credibility: Simulations and models must be of extremely high fidelity, based on real-world physics and validated data, to be useful for training and operational planning.17
  • Identity Determinacy: Users have pre-determined and authenticated military identities (e.g., commander, pilot, logistics officer) with clear roles and permissions.17

The Concept of “Meta-War”

Flowing from the battleverse concept is the PLA’s theory of “Meta-War.” This is defined as a new type of military activity that leverages the battleverse’s technological capabilities to achieve the strategic objective of conquering an opponent’s will.1 The architecture of Meta-War is designed to link three distinct but interconnected battlefields 1:

  1. The Physical Battlefield: The traditional domain of land, sea, air, and space where kinetic actions occur.
  2. The Virtual Battlefield: The digital space within the battleverse where simulations, cyber operations, and virtual combat take place.
  3. The “Brain Battlefield” (头脑战场): The cognitive space representing the conscious perceptions, situational awareness, and decision-making processes of soldiers and commanders.

The core function of the battleverse in Meta-War is to fuse these three domains, allowing personnel to seamlessly switch between the real-world battlefield and a virtual parallel battlefield as needed. This enables them to engage in live combat, run complex simulations of future actions, and predict outcomes in a fully immersive environment, all in real-time.1

Core Enabling Technologies

The PLA’s vision for the battleverse is predicated on the successful convergence and integration of a suite of advanced technologies.

  • Digital Twins: This technology is the architectural linchpin of the entire battleverse concept. A digital twin is a high-fidelity, virtual replica of a physical asset, process, or even an entire environment that is continuously updated with real-time data from its real-world counterpart.17 The PLA defines it as a mapping in virtual space that reflects the full life cycle of a piece of physical equipment.18 It is the digital twin that bridges the virtual and the real. Without accurate, persistent, real-time digital twins of weapon platforms, sensors, infrastructure, and geographical terrain, the battleverse would be merely a sophisticated but disconnected simulation. The digital twin provides the essential data-driven foundation that allows for realistic training, predictive maintenance, logistics optimization, and credible mission rehearsal.18 The PLA’s progress in creating a functional battleverse can, therefore, be most accurately measured by its progress in developing and integrating digital twin technology across its forces.
  • Artificial Intelligence (AI): If the digital twin is the skeleton of the battleverse, AI is its brain. AI is envisioned to perform a multitude of functions: generating rich and dynamic virtual scenes, providing real-time battlefield object recognition, powering intelligent “Blue Army” adversaries, and offering intelligent-assisted decision-making support to commanders.3 Crucially, AI systems themselves are expected to be trained within the battleverse through processes of “self-play and confrontational evolution,” allowing them to become “strategists” for conquering the virtual cognitive space without human intervention.6
  • Extended Reality (XR): XR technologies—including Virtual Reality (VR), Augmented Reality (AR), and Mixed Reality (MR)—serve as the primary human-machine interface for the battleverse.1 VR headsets, AR glasses, and haptic feedback suits are the tools that will provide the immersive, “on-site feeling” for soldiers in training, commanders directing battles, or maintainers repairing equipment.17
  • Supporting Infrastructure: A robust technological foundation is required to support these core components. This includes high-bandwidth, low-latency networking (such as 5G and beyond) to transmit vast amounts of data between the physical and virtual worlds; advanced computing (cloud for data storage and processing, and potentially quantum for complex calculations) to run the simulations; and a ubiquitous Internet of Things (IoT) to provide the constant stream of sensor data needed to keep the digital twins synchronized with reality.1 PLA theorists also explicitly mention brain-computer interfaces (BCIs) as a potential future interface for controlling systems directly.1

III. Applications and Concepts of Operation: Waging “Meta-War”

The PLA’s development of the battleverse is not purely theoretical. It is pursuing a dual-track approach: actively implementing mature, battleverse-related technologies for near-term gains while simultaneously developing radical new concepts of operation for future, fully-realized “Meta-War.”

A. Current and Near-Term Applications (The “Practice”)

The most tangible progress in implementing battleverse technologies is evident in areas that offer immediate improvements to readiness, efficiency, and force development.

  • Training and Education: This is the most mature and widely documented application area. The PLA is leveraging immersive technologies to create training environments that are more realistic, repeatable, cost-effective, and safer than traditional methods.9
  • Skill-Based VR Training: The PLA has fielded VR systems for specific tasks, such as parachute training. These systems use virtual simulation and spatial positioning to expose new paratroopers to a range of aerial emergencies and unfamiliar environments in a risk-free setting, improving their real-world performance and adaptability.9 Similar systems are used for training operators of man-portable air-defense systems (MANPADS), allowing them to practice engaging diverse aerial targets like helicopters, cruise missiles, and fighter jets in a virtual environment.23
  • Tactical VR Training: More advanced systems are emerging for collective training. The “Wisdom Commando VR Training System,” developed by the state-owned China Electronics Technology Group Corporation (CETC), is a prime example. It uses VR helmets, haptic feedback suits, and simulated weapons to immerse a squad of soldiers in a virtual battlefield where they can train alongside both their real teammates and AI-powered virtual teammates. The system leverages key technologies like large-space positioning to allow free movement and machine learning algorithms to evaluate performance.20
  • Psychological Conditioning: The PLA is also exploring the use of VR to conduct wartime psychological training. The goal is to create hyper-realistic, high-stress virtual combat environments to better prepare soldiers for the psychological shock of real battle.24
  • Wargaming and Simulation (The “Blue Army”): The PLA has long used simulations for wargaming, but is now investing heavily in creating a next-generation, AI-driven “Blue Army”—the PLA’s term for a simulated adversary force, akin to a U.S. “Red Team”.25 The objective is to move beyond scripted, service-level simulations to a dynamic, all-element joint combat simulation platform. The AI-powered Blue Army is intended to perfectly mimic the command decision-making behavior and tactics of a potential adversary, allowing the PLA to rigorously test its own operational concepts, identify weaknesses, and discover “possible blind spots” at a pace and scale impossible in live exercises.25 This effort is augmented by research at institutions like Xi’an Technological University, where AI models like DeepSeek are being used to autonomously generate tens of thousands of potential battlefield scenarios in seconds, transforming simulation from a static, pre-programmed system into an “autonomously evolving intelligent agent”.26
  • Equipment R&D, Maintenance, and Logistics: Digital twin technology is the centerpiece of efforts to modernize the entire lifecycle of military equipment.
  • Research & Development: The PLA envisions using digital twins to dramatically shorten the R&D cycle for complex platforms like warships and aircraft.17 By creating and testing virtual prototypes in a realistic, simulated combat environment, engineers can validate designs, assess combat effectiveness, and identify flaws before any physical manufacturing begins, saving immense time and resources.17
  • Maintenance and Logistics: In the sustainment phase, a digital twin of a platform, continuously fed with real-world performance data, can enable predictive maintenance, anticipating part failures before they occur.18 In logistics, digital twins of supply chains and transportation networks can create a system of “intelligent war logistics,” allowing for a more flexible, on-demand, and resilient supply chain that can adapt to the dynamic needs of the battlefield.18
  • Procurement and Development Ecosystem: The PLA’s commitment is reflected in its procurement activities and the emergence of a specialized development ecosystem. Analysis of PLA procurement records reveals a clear focus on acquiring “smart” and “intelligent” systems, including augmented reality sandboxes for training and intelligent interactive control systems.28 A 2020 analysis showed significant purchasing in intelligent and autonomous vehicles and AI-enabled ISR, sourced from a diverse ecosystem of both traditional state-owned defense enterprises and smaller, non-traditional vendors.15 Specialized entities are also emerging, such as the “Digital Twin Battlefield Laboratory,” which offers bespoke R&D services, consulting, and the construction of digital twin test ranges, indicating a professionalization of the field.30

B. Future Combat Concepts (The “Theory of Meta-War”)

Beyond near-term applications, PLA strategists are developing highly advanced, and in some cases radical, theories for how a fully realized battleverse will change the nature of combat itself. These concepts are detailed in an article titled “Meta-War: An Alternative Vision of Intelligentized Warfare” and represent the PLA’s theoretical end-state for metaverse-enabled conflict.1

  • The Three Methods of “Meta-War”:
  1. “(Virtual) Clone/Avatar [分身] Combat in the Virtual World”: This form of combat takes place entirely within the digital realm of the battleverse. It encompasses activities like cyber warfare, psychological operations, and the manipulation of public opinion, conducted from behind the scenes to shape the battlespace before and during a conflict.1 On the virtual “front lines,” combatants would use avatars to conduct highly realistic pre-battle training, mission rehearsals, and simulated combat exercises.1
  2. “Simulacrum/Imitation [仿身] Combat in the Real World”: This concept describes real-world combat where human soldiers are replaced on the front lines by weaponized “simulacrums.” These are not fully autonomous robots but rather platforms—such as humanoid robots, bionic machines, or mechs—that are controlled in real-time by human operators from a safe distance.1 These simulacrums would carry the human operator’s perception and intent onto the battlefield, allowing them to perform dangerous and complex tasks. The control interfaces could include remote controls, tactile devices, or even direct brain-computer interfaces.1 This concept represents a pragmatic approach to the challenges of fully autonomous AI. Instead of waiting for a breakthrough in artificial general intelligence that can handle the complexities and ethical dilemmas of combat, this model uses the human brain as the advanced processor, effectively “teleporting” a soldier’s cognitive abilities into an expendable, physically superior machine. It leverages the unique strengths of both humans (adaptability, creativity, ethical judgment) and machines (speed, endurance, resilience) to field a highly capable semi-autonomous force in the near-to-mid term.
  3. “Incarnation/Embodiment [化身] Combat in Parallel Worlds”: This is the ultimate synthesis of the first two concepts, representing the full fusion of the real and virtual. In this mode of combat, human soldiers, their virtual avatars, and their controlled simulacrums would operate in unison across parallel realities.1 A human soldier and their weapon system would function as a “dual entity,” existing simultaneously in the physical world and as a digital twin in the virtual world. They would be capable of switching between and interacting across these realities. In this paradigm, victory might not be determined solely by physical destruction but by which side first achieves a critical objective in the virtual world, such as discovering a hidden key or disabling a virtual command node, which then translates to a decisive advantage in the real world.1
  • The Centrality of the “Brain Battlefield” (头脑战场): Underlying all three methods of Meta-War is the focus on the “brain battlefield”—the cognitive state of the adversary.1 The ultimate purpose of fusing the virtual and real is to create an environment where the PLA can manipulate the enemy’s perception of reality. By using highly deceptive information, injecting false virtual targets into an enemy’s augmented reality display, or creating confusing scenarios, the PLA aims to directly attack the enemy’s cognitive processes, interfering with their judgment, slowing their decision-making, and inducing fatal errors.10 This represents a profound doctrinal shift away from a primary focus on physical attrition. The goal of Meta-War is not just to destroy the enemy’s forces, but to achieve a state of cognitive paralysis, shattering their will and ability to fight by making them incapable of trusting their own senses and systems. A successful campaign might result in an enemy force that is physically intact but rendered completely combat-ineffective, achieving victory with potentially less kinetic violence.

IV. The Geopolitical Battlefield: U.S.-China Competition in the Military Metaverse

The PLA’s pursuit of a battleverse is not occurring in a vacuum. It is a central element of its broader strategic competition with the United States, which is pursuing its own, parallel efforts to develop next-generation synthetic training and operational environments. While there are technological similarities, a comparative analysis reveals significant divergences in strategic vision, doctrinal approach, and organizational structure.

China’s Approach: Top-Down, Doctrine-Driven, and Integrated

As previously established, the PLA’s battleverse initiative is a key component of a unified, top-down national and military strategy.1 This provides a coherent vision that integrates technological development with a pre-defined warfighting doctrine—”Intelligentized Warfare.” The explicit goal is to leverage these technologies to generate “asymmetric advantages” against the United States, which the PLA regards as a “strong enemy” and its primary strategic competitor.29 A defining feature of this approach is the PLA’s doctrinal willingness to explore higher levels of AI autonomy. PLA writings suggest a desire to remove the human soldier from certain decision-making loops where possible, believing that machine-driven speed can provide a decisive edge in achieving “decision dominance”.31

The U.S. Approach: Bottom-Up, Technologically Focused, and Federated

The United States does not use the term “battleverse,” but its armed services and research agencies are developing a suite of highly advanced capabilities that aim to achieve similar outcomes in training and operations.33 The U.S. effort, however, is more federated and appears to be driven more by technological opportunity than by a single, overarching new doctrine.

  • U.S. Army Synthetic Training Environment (STE): This is one of the Army’s top modernization priorities, designed to revolutionize training by converging live, virtual, constructive, and gaming environments into a single, interoperable platform.11 The STE is software-focused, leverages cloud computing, and is designed to be accessible to soldiers at their “point of need,” from home station to deployed locations.34 Its goal is to allow soldiers to conduct dozens of “bloodless battles” in a realistic virtual world before ever seeing combat.34
  • U.S. Air Force Digital Twin Programs: The U.S. Air Force is a global leader in the practical application of digital twin technology. Notable projects include the creation of a complete, engineering-grade digital twin of the F-16 Fighting Falcon to streamline sustainment, modernization, and repairs 38, and the development of a massive, installation-scale digital twin of Tyndall Air Force Base in Florida. This virtual replica of the base is used to manage its multi-billion-dollar reconstruction after a hurricane, optimize planning, and run realistic security simulations, such as active shooter drills.39 These programs demonstrate a high level of maturity in deploying the foundational technology of any military metaverse.
  • DARPA Research: The Defense Advanced Research Projects Agency (DARPA) is pushing the technological frontier. Its programs are not only developing the building blocks of future synthetic environments but are also proactively researching defenses against the threats they might pose. Programs like Perceptually-enabled Task Guidance (PTG) are developing AI assistants that can guide personnel through complex physical tasks using augmented reality.41 More critically, there is a striking parallel between the PLA’s offensive cognitive warfare concepts and DARPA’s defensive research. The PLA is actively theorizing about using the metaverse to conduct cognitive attacks to “confuse the opponent’s cognition” and “mislead their decision-making”.10 In response, DARPA’s Intrinsic Cognitive Security (ICS) program is explicitly designed to build tactical mixed reality systems that can protect warfighters from precisely these kinds of “cognitive attacks,” such as “information flooding,” “injecting virtual data to distract personnel,” and “sowing confusion”.42 This indicates that U.S. defense planners are taking this threat vector seriously, and the competition is already well underway at the conceptual and R&D level. DARPA is, in effect, attempting to build the shield for a sword the PLA is still designing.

Comparative Analysis: Key Divergences

The competition between the U.S. and China in this domain is not a simple technology race but a clash of strategic philosophies. The U.S. appears to possess more advanced individual components and a more vibrant R&D ecosystem, but China’s top-down, integrated approach may allow for faster and more cohesive implementation of a unified vision. The strategic contest may hinge on which model proves more effective: the U.S. model of federated innovation and gradual integration into existing structures like Joint All-Domain Command and Control (JADC2), or China’s model of unified, doctrine-driven development.

The most critical point of divergence is the doctrinal approach to autonomy. U.S. military doctrine, policy, and ethics heavily prioritize a “human-in-the-loop” or human-machine teaming paradigm, where AI serves as an assistive tool to enhance, not replace, human decision-making.31 In contrast, PLA writings are more ambitious, exploring concepts of greater AI autonomy and explicitly discussing the potential advantages of removing the human from the decision-making process to achieve superior speed and “decision dominance”.31 This fundamental difference in philosophy could lead to two very different types of “intelligentized” forces in the future.

Table 1: Comparative Analysis of U.S. and PRC Military Metaverse Initiatives

FeatureU.S. Synthetic Training Environment (STE) & Related ProgramsPRC “Battleverse” (战场元宇宙)
Primary DoctrineJoint All-Domain Command and Control (JADC2); Human-Machine TeamingIntelligentized Warfare (智能化战争); Cognitive Dominance
Key ProgramsArmy STE, USAF Digital Twin (F-16, Tyndall AFB), DARPA research (ICS, PTG)CETC VR Systems, Digital Twin Battlefield Lab, AI-driven “Blue Army” Simulations
Technological FocusInteroperability, COTS integration, augmented reality (IVAS), cloud computingAI-driven autonomy, digital twins, VR immersion, brain-computer interfaces
Development StatusMultiple programs in advanced development and initial fielding (demonstrating high component maturity)Extensive conceptual work; foundational technologies in active development and procurement (demonstrating high strategic integration)
Approach to Autonomy“Human-in-the-loop” prioritized; AI as an assistive tool for human decision-makersExploration of higher degrees of AI autonomy; potential for machine-driven decision-making to gain speed

V. Assessment of Challenges, Vulnerabilities, and Strategic Implications

Despite the PLA’s ambitious vision and strategic commitment, the path to a fully functional battleverse is fraught with significant internal challenges and creates new strategic vulnerabilities. Realizing this complex ecosystem is a monumental undertaking, and its successful implementation has profound implications for regional security, particularly concerning a potential conflict over Taiwan.

Internal PLA Challenges

Chinese military experts and technical analysts are themselves candid about the significant barriers the PLA faces.

  • Technological and Integration Hurdles: The technical challenges are immense. In a comprehensive review of Chinese-language defense journals, PLA officers and defense industry researchers identified several key concerns. These include the ability to guarantee network and cyber security for such a complex system, the difficulty of maintaining robust communications in a high-intensity conflict, and the need to develop the high-end sensors required to feed the digital twins with accurate data.45 Integrating dozens of disparate, specialized AI systems from various vendors into a coherent, multi-domain “system of systems” is an enormous software and systems engineering challenge that no military has yet solved.46
  • Data and AI Trustworthiness: The entire concept of intelligentized warfare hinges on the reliability of data and the trustworthiness of AI. However, AI systems are notoriously vulnerable to flawed, biased, or maliciously manipulated input data, which can lead to catastrophic errors in judgment.46 Many Chinese experts express deep misgivings about deploying insufficiently trustworthy AI systems in lethal contexts, citing the risks of unintended escalation, civilian casualties, and friendly fire incidents.45 The inherent “black box” nature of some advanced AI models makes it difficult for human commanders to understand, verify, and ultimately trust their recommendations, a critical barrier to effective human-machine teaming.46
  • Systemic Vulnerability to Attack: The battleverse’s greatest strength—its hyper-connectivity and total integration—is also its greatest weakness. This creates a strategic paradox: while it promises unprecedented operational coherence, it also presents a systemic, single-point-of-failure vulnerability. PLA thinkers acknowledge that the algorithms and networks at the core of the battleverse are prime targets. A successful cyber or electronic attack that compromises the integrity of the battleverse’s data or manipulates its core algorithms could lead to a total loss of combat capability for the entire force.47 This suggests that a U.S. strategy should not necessarily be to build a mirror-image battleverse, but to develop the asymmetric capabilities required to disrupt, deceive, and disable the PLA’s version.
  • Ethical and Legal Dilemmas: The prospect of intelligentized warfare raises profound ethical and legal questions that Chinese strategists are beginning to grapple with. These include the morality of delegating life-and-death decisions to machines and the intractable problem of assigning legal accountability for war crimes committed by an autonomous system.48

Strategic Implications for the United States and Allies

The PLA’s development of a battleverse, even if only partially successful, will have significant strategic implications.

  • The Taiwan Scenario: The battleverse is a powerful tool for a potential Taiwan contingency. The PLA could leverage a high-fidelity digital twin of Taiwan and its surrounding environment to wargame an invasion scenario thousands of times, allowing them to meticulously test operational plans, identify weaknesses in Taiwan’s defenses, and perfect their joint force coordination at minimal cost and risk.18 This would enable the PLA to enter a conflict with a level of rehearsal and optimization previously unimaginable. Furthermore, the initial phase of an invasion could be non-kinetic, launched from within the battleverse. It could consist of massive, coordinated cyber, electronic, and cognitive attacks designed to paralyze Taiwan’s command and control, sow chaos and confusion, and degrade its will to fight before a single ship or plane crosses the strait.10 The battleverse also provides a new and potent platform for “gray zone” activities. In the years leading up to a potential conflict, the PLA could use the virtual space to conduct persistent, low-threshold operations against a digital twin of Taiwan—testing cyber defenses, mapping critical infrastructure, and running subtle cognitive influence campaigns, all below the threshold of armed conflict but effectively shaping the future battlefield.
  • Accelerated PLA Modernization: A functional battleverse would act as a powerful force multiplier for PLA modernization. It would create a virtual feedback loop, allowing the PLA to develop, test, and refine new technologies, tactics, and doctrine at a speed that cannot be matched by traditional, resource-intensive live exercises. This could dramatically shorten the timeline for the PLA to achieve its goal of becoming a “world-class” military capable of fighting and winning wars against a strong adversary.
  • Risk of Rapid Escalation: A key objective of intelligentized warfare is to accelerate the decision-making cycle (the OODA loop) to a speed that overwhelms an opponent. However, this reliance on AI-driven speed could have a destabilizing effect in a crisis. It could drastically shorten the time available for human deliberation and diplomacy, potentially leading to a rapid and unintended escalation from a regional crisis to a major conflict.46

Conclusion and Recommendations

The People’s Liberation Army’s pursuit of a military metaverse, or “battleverse,” is a serious, coherent, and long-term strategic endeavor that is deeply integrated with its national and military modernization goals. It is the designated operational environment for the PLA’s future warfighting doctrine of “Intelligentized Warfare.” While the vision of a fully fused virtual-real battlefield remains aspirational, and significant technical and systemic challenges persist, the conceptual groundwork is well-established, and foundational investments in enabling technologies like AI, digital twins, and VR are well underway. The most critical divergence from Western military development lies in the PLA’s doctrinal embrace of AI-driven autonomy and its explicit focus on achieving victory through cognitive dominance.

Over the next five years, the PLA will likely field advanced, networked VR/AR training and large-scale simulation systems across all services, significantly improving training realism, joint operational proficiency, and tactical development speed. Within a decade, it is plausible that the PLA will be experimenting with integrated “Meta-War” concepts in major exercises, fusing digital twin environments with live forces and testing rudimentary “simulacrum” platforms under direct human control. This trajectory presents a formidable challenge that requires a proactive and multi-faceted response from the United States and its allies.

Based on this assessment, the following recommendations are offered for the U.S. intelligence community, the Department of Defense, and associated policymakers:

  1. Prioritize Intelligence Collection on PLA Digital Twin Development: Intelligence collection and analysis should shift from a primary focus on individual hardware procurement to tracking the PLA’s progress in developing and integrating high-fidelity digital twins. Monitoring the creation of virtual replicas of key platforms (e.g., aircraft carriers, advanced destroyers, 5th-generation aircraft) and strategic locations (e.g., Taiwan, Guam, key U.S. bases in the Indo-Pacific) will serve as the most accurate barometer of the PLA’s true battleverse capability and its operational readiness for specific contingencies.
  2. Invest in “Red Team” Cognitive and Algorithmic Warfare Capabilities: The Department of Defense should fund and prioritize the development of offensive capabilities designed specifically to target the inherent vulnerabilities of a centralized, hyper-networked battleverse architecture. This includes advanced research in data poisoning, algorithm manipulation, network deception, and cognitive attacks designed to sow mistrust between PLA operators and their AI systems. The goal should be to develop the means to turn the battleverse’s greatest strength—its integration—into a critical vulnerability.
  3. Accelerate and Integrate U.S. Synthetic Environment Efforts: While maintaining a firm doctrinal commitment to human-centric command and control, the Department of Defense should accelerate the integration of its disparate synthetic environment programs (e.g., Army STE, Air Force digital twins, Navy trainers) into a coherent, JADC2-enabled operational environment. The strategic objective should be to outpace the PLA’s integration efforts by leveraging the U.S. technological advantage in areas like cloud computing, COTS software, and advanced AI to create a more flexible, resilient, and effective human-machine teaming ecosystem.
  4. Establish Ethical and Policy Guardrails for AI in Warfare: The United States should lead a robust and sustained dialogue with key allies to establish clear norms, ethical red lines, and policies for the use of AI and autonomous systems in combat. Codifying a commitment to meaningful human control will create a clear strategic and moral distinction from the PLA’s more ambiguous doctrinal path, strengthen allied cohesion on this critical issue, and provide a framework for future arms control discussions.

If you find this post useful, please share the link on Facebook, with your friends, etc. Your support is much appreciated and if you have any feedback, please email me at in**@*********ps.com. Please note that for links to other websites, we are only paid if there is an affiliate program such as Avantlink, Impact, Amazon and eBay and only if you purchase something. If you’d like to directly donate to help fund our continued report, please visit our donations page.


Sources Used:

  1. The Path to China’s Intelligentized Warfare: Converging on the Metaverse Battlefield – The Cyber Defense Review, accessed October 5, 2025, https://cyberdefensereview.army.mil/Portals/6/Documents/2024-Fall/Baughman_CDRV9N3-Fall-2024.pdf
  2. The Path to China’s Intelligentized Warfare: Converging on the Metaverse Battlefield – The Cyber Defense Review, accessed October 5, 2025, https://cyberdefensereview.army.mil/CDR-Content/Articles/Article-View/Article/4012231/the-path-to-chinas-intelligentized-warfare-converging-on-the-metaverse-battlefi/
  3. PLA’s Perception about the Impact of AI on Military Affairs* – IIDA Masafumi, accessed October 5, 2025, https://www.nids.mod.go.jp/english/publication/security/pdf/2022/01/04.pdf
  4. China’s Military Employment of Artificial Intelligence and Its Security Implications, accessed October 5, 2025, https://www.iar-gwu.org/print-archive/blog-post-title-four-xgtap
  5. 智能化战争,你准备好了吗? – 求是, accessed October 5, 2025, https://www.qstheory.cn/defense/2019-06/12/c_1124611640.htm
  6. 从多维视角看智能化战争- 解放军报- 中国军网, accessed October 5, 2025, http://www.81.cn/jfjbmap/content/2022-07/07/content_319277.htm
  7. 智能化战争作战体系前瞻 – 安全内参, accessed October 5, 2025, https://www.secrss.com/articles/71292
  8. Enhancing the Battleverse: The PLA’s Digital Twin Strategy – Digital China Wins the Future, accessed October 5, 2025, https://digitalchinawinsthefuture.com/2023/05/18/military-cyber-affairs-the-plas-digital-twin-strategy/
  9. Enter the Battleverse: China’s Metaverse War – Air University, accessed October 5, 2025, https://www.airuniversity.af.edu/Portals/10/CASI/documents/Research/Cyber/2022-05-02%20Enter%20the%20Battleverse.pdf
  10. 中国要将元宇宙军事化?解放军报“从和平到战争”构想见端倪 – 美国之音, accessed October 5, 2025, https://www.voachinese.com/a/china-metaverse-security-20220510/6565529.html
  11. Analysis of Military Metaverses: the Case of the USA, India and China – Journals, accessed October 5, 2025, https://en.nbpublish.com/library_read_article.php?id=40042
  12. Chinese Metaverse-enabled Military Training On the Rise | Red Dragon 1949 / 紅龍1949, accessed October 5, 2025, https://reddragon1949.com/chinese-military-cognitive-domain-operations/chinese-metaverse-enabled-military-training-on-the-rise/
  13. 觀察中國「元宇宙」之未來發展概況 – 國防安全研究院-國防安全雙週報, accessed October 5, 2025, https://indsr.org.tw/respublicationcon?uid=12&resid=1875&pid=1603
  14. China’s growing civilian-defence AI ties will challenge US, report says | Center for Security and Emerging Technology, accessed October 5, 2025, https://cset.georgetown.edu/article/chinas-growing-civilian-defence-ai-ties-will-challenge-us-report-says/
  15. U.S. and Chinese Military AI Purchases | Center for Security and Emerging Technology, accessed October 5, 2025, https://cset.georgetown.edu/publication/u-s-and-chinese-military-ai-purchases/
  16. CSET – U.S. and Chinese Military AI Purchases – Center for Security and Emerging Technology, accessed October 5, 2025, https://cset.georgetown.edu/wp-content/uploads/CSET-U.S.-and-Chinese-Military-AI-Purchases-1.pdf
  17. Study on military metaverse and applications, accessed October 5, 2025, https://www.worldscientific.com/doi/pdf/10.1142/s1793962323500538
  18. Enhancing the Battleverse: The People’s Liberation Army’s Digital …, accessed October 5, 2025, https://digitalcommons.usf.edu/cgi/viewcontent.cgi?article=1091&context=mca
  19. 虚拟现实技术在军队任职教育院校实践教学中的应用构想, accessed October 5, 2025, http://library.ttcdw.com/uploadfiles/zk/1533890185.pdf
  20. 中国电科发布未来战场环境虚拟现实训练系统 – 国家国防科技工业局, accessed October 5, 2025, https://www.sastind.gov.cn/n10086200/n10086344/c10177264/content.html
  21. 虚拟现实技术使武器装备超前“参战” – 新华网, accessed October 5, 2025, http://news.xinhuanet.com/mil/2016-06/30/c_129104033.htm
  22. 元宇宙概念及其军事运用 – 系统仿真学报, accessed October 5, 2025, https://www.china-simulation.com/EN/article/downloadArticleFile.do?attachType=PDF&id=3174
  23. 解放军装备新型模拟训练系统用VR技术打飞机(图) – 新浪军事, accessed October 5, 2025, https://mil.sina.cn/sd/2017-12-22/detail-ifypvuqf1492623.d.html
  24. 虚拟现实技术在战时心理训练系统的应用研究 – 兵器装备工程学报, accessed October 5, 2025, https://bzxb.cqut.edu.cn/download.aspx?type=paper&id=7066
  25. MCPA – Baughman – China Blue Army Metaverse – Military Cyber Professionals Association, accessed October 5, 2025, https://public.milcyber.org/activities/magazine/articles/2022/baughman-china-blue-army-metaverse
  26. Chinese Researchers Deploy DeepSeek AI to Simulate Military Scenarios – Defense Mirror, accessed October 5, 2025, https://www.defensemirror.com/news/39508/Chinese_Researchers_Deploy_DeepSeek_AI_to_Simulate_Military_Scenarios
  27. 数字孪生技术在智能化战争中的应用 – 安全内参, accessed October 5, 2025, https://www.secrss.com/articles/46111
  28. Artificial Intelligence and the People’s Liberation Army | Datenna, accessed October 5, 2025, https://www.datenna.com/wp-content/uploads/2024/11/Report-Datenna-Artificial-Intelligence-and-the-Peoples-Liberation-Army-.pdf
  29. Report: China’s PLA has made ‘extraordinary progress’ in procuring AI for combat, accessed October 5, 2025, https://therecord.media/report-chinas-pla-has-made-extraordinary-progress-in-procuring-ai-for-combat
  30. 数字孪生战场实验室简要介绍(2025年更新) – 工业4.0研究院, accessed October 5, 2025, http://www.innobase.cn/?p=3312
  31. Army Cites China’s AI-Based “Intelligentized Warfare” As Growing Threat – Warrior Maven, accessed October 5, 2025, https://warriormaven.com/news/land/army-cites-chinas-ai-based-intelligentized-warfare-as-growing-threat
  32. The Impact Of The Latest Military Technologies On Soldiers In A Potential US-China Confrontation – Hoover Institution, accessed October 5, 2025, https://www.hoover.org/research/impact-latest-military-technologies-soldiers-potential-us-china-confrontation
  33. Enter the Battleverse: China’s Metaverse War – Digital Commons @ USF – University of South Florida, accessed October 5, 2025, https://digitalcommons.usf.edu/cgi/viewcontent.cgi?article=1083&context=mca
  34. The Synthetic Training Environment – AUSA, accessed October 5, 2025, https://www.ausa.org/sites/default/files/publications/SL-20-6-The-Synthetic-Training-Environment.pdf
  35. The Synthetic Training Environment | AUSA, accessed October 5, 2025, https://www.ausa.org/publications/synthetic-training-environment
  36. Revolutionizing Military Training: The US Army’s Synthetic Training Environment (STE), accessed October 5, 2025, https://idstch.com/military/army/revolutionizing-military-training-the-us-armys-synthetic-training-environment-ste/
  37. Synthetic Training Environment (STE) | USC ICT, accessed October 5, 2025, https://ict.usc.edu/wp-content/uploads/2021/09/STE_Overview.pdf
  38. Air Force to develop F-16 ‘digital twin’ – AFLCMC, accessed October 5, 2025, https://www.aflcmc.af.mil/news/article-display/article/2677215/air-force-to-develop-f-16-digital-twin/
  39. Building DOD’s Largest-Ever Digital Twin of Its Kind – Booz Allen, accessed October 5, 2025, https://www.boozallen.com/insights/digital-twin/building-dods-largest-ever-digital-twin-of-its-kind.html
  40. ERDC uses digital twin technology to recreate damaged Air Force base, accessed October 5, 2025, https://www.erdc.usace.army.mil/Media/News-Stories/Article/3188133/erdc-uses-digital-twin-technology-to-recreate-damaged-air-force-base/
  41. Developing Virtual Partners to Assist Military Personnel – DARPA, accessed October 5, 2025, https://www.darpa.mil/news/2021/virtual-partners-military-personnel
  42. DARPA Taps LSU to Solve Cybersecurity Challenges in Virtual and Augmented Reality, accessed October 5, 2025, https://www.lsu.edu/mediacenter/news/2023/06/20-cyber-darpa.php
  43. DARPA Preps Program to Protect Mixed Reality Users from Cognitive Attacks – The Sociable, accessed October 5, 2025, https://sociable.co/military-technology/darpa-protect-mixed-reality-users-cognitive-attacks/
  44. DARPA Seeks to Protect Virtual Reality Against “Cognitive Attacks” – Futurism, accessed October 5, 2025, https://futurism.com/the-byte/darpa-vr-cognitive-attacks
  45. China’s Military AI Roadblocks | Center for Security and Emerging Technology – CSET, accessed October 5, 2025, https://cset.georgetown.edu/publication/chinas-military-ai-roadblocks/
  46. 人工智能对战场的影响- 安全内参| 决策者的网络安全知识库, accessed October 5, 2025, https://www.secrss.com/articles/13747
  47. 认清智能化战争的制胜要素 – 求是, accessed October 5, 2025, https://www.qstheory.cn/llwx/2020-06/18/c_1126130211.htm
  48. 关于智能化战争的基本认知_学术前沿_人民论坛网, accessed October 5, 2025, https://www.rmlt.com.cn/2021/0811/621409.shtml
  49. The Autonomous Arsenal in Defense of Taiwan: Technology, Law, and Policy of the Replicator Initiative | The Belfer Center for Science and International Affairs, accessed October 5, 2025, https://www.belfercenter.org/replicator-autonomous-weapons-taiwan