Tag Archives: USSR

Overmatch vs. Mass: A Comparative Analysis of U.S. and Russian Small Arms Adoption Lifecycles

This report provides an exhaustive comparative analysis of the small arms adoption lifecycles of the United States and the Russian Federation, examining the entire process from the identification of a military need to final field deployment. The analysis reveals two fundamentally divergent philosophies rooted in distinct strategic cultures, industrial models, and historical experiences. The United States employs a market-driven, technology-focused model aimed at achieving “technological overmatch”—a decisive qualitative advantage over any potential adversary. This approach is characterized by a complex, lengthy, and expensive procurement process, managed through a competitive commercial industrial base, which yields highly advanced but costly weapon systems. Conversely, the Russian Federation utilizes a state-directed, evolution-based model that prioritizes reliability, simplicity, and mass production. This system, a legacy of its Soviet predecessor, relies on a state-controlled defense-industrial complex to produce robust, cost-effective weapons that are evolutionary upgrades of proven designs, intended to equip a large military force. The recent conflict in Ukraine has stress-tested both philosophies, highlighting the strengths and critical vulnerabilities of each. This report deconstructs the procedural steps, doctrinal underpinnings, and industrial realities of both lifecycles, offering a detailed analysis of their respective pros and cons and concluding with strategic lessons and an outlook on the future of infantry weapons in an era of rapid technological change.


Part I: The American Approach: A Market-Driven Quest for Overmatch

The United States’ approach to small arms adoption is a direct reflection of its broader national defense strategy: to deter and, if necessary, win conflicts through overwhelming technological superiority. This philosophy permeates every stage of the adoption lifecycle, from the initial definition of a requirement to the final fielding of a weapon system. The process is intricate, deliberative, and deeply integrated with a competitive commercial defense industry, creating a system that is simultaneously capable of producing world-leading technology and susceptible to significant bureaucratic and financial challenges.

Section 1. Doctrinal and Industrial Philosophy: The Pursuit of the Decisive Edge

The modern American system for developing and acquiring small arms is built upon three foundational pillars: a strategic doctrine demanding technological superiority, an industrial model reliant on the private sector, and a bureaucratic framework designed to enforce joint-service requirements.

Core Philosophy of “Technological Overmatch”

The central tenet of U.S. military modernization is the pursuit of “technological overmatch”.1 This doctrine posits that American forces must possess a decisive technological advantage to offset potential numerical inferiority and minimize casualties. In the context of small arms, this means new weapon systems are not sought as mere replacements for aging inventory; they are expected to be “leap-ahead” capabilities that provide quantifiable and significant improvements in core performance metrics such as accuracy, effective range, and terminal lethality.3 The objective is not to achieve parity with an adversary’s capabilities but to render them obsolete. This philosophy was the driving force behind the Next Generation Squad Weapon (NGSW) program, which was initiated specifically to defeat peer-adversary body armor that the existing 5.56x45mm NATO round could no longer reliably penetrate at desired engagement distances.5 The pursuit of overmatch dictates a high tolerance for complexity and cost in exchange for a decisive edge on the battlefield.

The Post-McNamara Industrial Model

The structure of the U.S. defense industrial base today is a direct legacy of policy decisions made in the mid-20th century, most notably those of Secretary of Defense Robert McNamara. His administration oversaw the closure of the government-owned and -operated armory system, exemplified by the historic Springfield Armory, which had designed and produced U.S. military small arms for nearly two centuries.6 This pivotal shift transferred the primary responsibility for weapons development and manufacturing to the private commercial sector.6

Consequently, the Department of Defense (DoD) transitioned from being a producer to a customer. The modern process involves the DoD generating detailed specifications and performance requirements, which are then distributed to industry through mechanisms like Requests for Proposal (RFPs) to solicit concepts and bids.6 This created a competitive marketplace where private firms vie for lucrative, long-term government contracts. The intended benefit of this model was to harness the dynamism and innovation of the American commercial sector, fostering a broader range of potential solutions than a state-run system could provide.6

However, this commercialization introduced a complex dynamic. The shift to a private industrial base created a vibrant ecosystem for innovation that the DoD can leverage.8 At the same time, it transformed the adoption process into an intense economic and political competition. The immense financial stakes involved—often hundreds of millions or even billions of dollars over the life of a program—incentivize extensive lobbying and political engagement by major defense contractors.6 This can lead to situations where legislators intervene to “jam up the process” to advocate for a vendor located in their state or district.6 Furthermore, the procurement cycle is notoriously long, formal, and bureaucratic, creating what is known in the industry as the “valley of death”.10 This is the perilous gap between the development of a promising prototype and the securing of a production contract, a period during which many smaller, more agile, and innovative companies often fail because they lack the financial reserves to sustain operations while navigating the protracted and costly procurement system.10 The system, therefore, inherently favors large, established defense contractors who possess the capital, institutional knowledge, and political influence required to endure the multi-year process.7 The very system designed to leverage commercial innovation can, in practice, create formidable barriers that filter for corporate endurance and political acumen as much as for pure technical merit.

Emphasis on Joint-Service Requirements

A third defining characteristic of the modern U.S. approach is the institutionalized emphasis on joint-service requirements. Historically, the different branches of the U.S. military often procured their own distinct weapon systems, leading to a proliferation of incompatible small arms and ammunition types. A congressional investigation in the 1970s, for instance, found that the U.S. Air Force alone had 25 different handguns in its inventory.11 This lack of standardization created significant logistical and interoperability challenges.

To address this, the DoD established the Joint Capabilities Integration and Development System (JCIDS), a formal process managed by the Joint Chiefs of Staff to validate military requirements from a joint-force perspective.12 The goal of JCIDS is to ensure that new systems are interoperable, non-redundant, and meet the needs of the entire force, not just a single service.13 This philosophy is further embodied in organizations like the Joint Service Small Arms Program (JSSAP), which was created to coordinate and standardize weapons procurement across the armed services, as exemplified by the XM9 program that led to the adoption of the Beretta M9 pistol.11 While often criticized for its bureaucracy, this joint-centric approach is a core element of the U.S. lifecycle, intended to maximize efficiency and operational effectiveness across the entire Department of Defense.

Section 2. The Lifecycle Framework: From Capability Gap to Fielded System

The U.S. small arms adoption lifecycle is a highly structured, multi-phase process governed by a dense framework of regulations and managed by specialized organizations. It is designed to be deliberative and exhaustive, moving a concept from an identified operational need through development, rigorous testing, and ultimately to production and fielding.

Phase 1: Requirements Generation (The JCIDS Process)

The journey of a new weapon system begins long before any hardware is built. It starts with the formal identification of a need, which is then codified and validated through the JCIDS process.

  • Triggering the Process: An adoption cycle is typically initiated by one of two primary drivers. The first is the simple aging of existing systems; firearms have a finite service life, and periodic replacement is necessary to prevent the force from fielding worn-out equipment.6 The more strategic driver, however, is the identification of an “emergent threat” or a “capability gap” where existing systems are deemed insufficient to meet future battlefield challenges.6 The NGSW program, for example, was a direct response to intelligence indicating that potential adversaries were fielding body armor capable of defeating the standard 5.56mm M4 carbine.5 This threat assessment triggers a formal requirements generation process.
  • Capabilities Based Assessment (CBA): The sponsoring military service, such as the U.S. Army, initiates the process by conducting a Capabilities Based Assessment (CBA).15 This is a formal, analytical study that identifies the operational tasks the force must be able to perform, assesses the ability of current and programmed systems to accomplish those tasks against a projected threat, and identifies any shortfalls or “gaps”.16 The CBA is the foundational document that provides the analytical justification for pursuing a new materiel solution.15
  • JCIDS Documentation and Validation: If the CBA determines that a new system is required, the sponsoring service develops an Initial Capabilities Document (ICD). The ICD formally documents the capability gap and proposes a range of potential solutions, both materiel and non-materiel (such as changes in doctrine or training).13 This document is then submitted into the JCIDS process for review and validation. It is scrutinized by the Joint Staff and various Functional Capability Boards (FCBs) before being presented to the Joint Requirements Oversight Council (JROC), which is chaired by the Vice Chairman of the Joint Chiefs of Staff.12 The JROC’s role is to validate the requirement from a joint-force perspective, ensuring it aligns with broader defense strategy and does not create redundancies.12 A validated ICD provides the authority for a program to proceed to a Milestone A decision, officially initiating the acquisition process.13
  • Critique of JCIDS: While well-intentioned, the JCIDS process is widely criticized within the defense community as a major source of delay and inefficiency. Critics argue that it is a “time-consuming, ‘low-value-added’ bureaucratic mess” that can add a minimum of two years to the development timeline.17 The process is seen as overly rigid, forcing programs to lock into technical specifications years before prototyping, which stifles innovation and makes it difficult to adapt to evolving technology or threats.17 Reports from the Government Accountability Office (GAO) have highlighted that programs rarely, if ever, complete the JCIDS validation process within the notional 103-day timeline established by the Joint Staff.18

Phase 2: Acquisition and Development (The PEO Soldier Model)

Once a requirement is validated, the program moves into the acquisition phase, managed by a dedicated Program Executive Office (PEO). For the U.S. Army, this responsibility falls to PEO Soldier.

  • Program Executive Office (PEO) Soldier: PEO Soldier is the Army’s central organization responsible for the rapid prototyping, procurement, and fielding of all equipment a soldier wears, carries, or consumes.19 Within this organization, specific small arms programs are managed by Project Manager Soldier Lethality (PM SL) and its subordinate offices, such as Product Manager, Individual Weapons (PdM IW) and Product Manager, Next Generation Weapons (PdM NGW).19 These offices are responsible for the entire lifecycle management of their assigned weapon systems, from development to divestiture.19
  • Industry Engagement and Solicitation: PM SL translates the validated requirements from the ICD into a formal solicitation for industry. This can take the form of a traditional Request for Proposal (RFP) or a more flexible instrument like a Prototype Project Opportunity Notice (PPON) issued under Other Transaction Authority (OTA).6 OTAs, in particular, have become a favored tool for accelerating development, as they are less constrained by traditional federal acquisition regulations and allow for more agile, collaborative prototyping efforts with industry.21 The solicitation will detail the Key Performance Parameters (KPPs)—the mandatory, non-negotiable performance thresholds the system must meet—as well as other desired attributes.6
  • Competitive Prototyping: A hallmark of the U.S. system is its reliance on competition to drive innovation and ensure value. For major programs, the government typically awards development contracts to multiple vendors, funding them to produce and submit prototype systems for evaluation.6 In the NGSW program, the Army down-selected three industry teams (SIG Sauer; General Dynamics/True Velocity; and Textron Systems) to participate in the final 27-month phase of prototyping and testing.3 Each team was required to deliver a complete system, including a rifle, an automatic rifle, and their unique ammunition solution.3 This competitive approach allows the government to evaluate multiple design philosophies side-by-side before committing to a single solution.

Phase 3: Testing, Evaluation, and Refinement

This phase is arguably the most critical and resource-intensive part of the U.S. lifecycle. It is a comprehensive and data-driven effort to ensure that a proposed system is not only technically sound but also operationally effective, reliable, and suitable for the soldier who will use it.

  • Rigorous Test and Evaluation (T&E) Protocol: Candidate systems are subjected to an exhaustive battery of tests designed to verify their performance against the KPPs and other requirements. This includes technical testing for accuracy, reliability, availability, and maintainability (RAM) under a wide range of environmental and operational conditions.6 For the NGSW program, this phase was immense in scale, involving the firing of over 1.5 million rounds of the new 6.8mm ammunition and the accumulation of over 20,000 hours of direct soldier testing and feedback.22 These tests are conducted at specialized facilities like the U.S. Army Combat Capabilities Development Command (DEVCOM) Armaments Center.23
  • Soldier-Centric Feedback and Iterative Design: A significant evolution in the modern U.S. T&E process is the deep integration of soldier feedback throughout development. Programs now incorporate multiple “Soldier Touch Points” (STPs), where active-duty soldiers are given prototype weapons and asked to evaluate their ergonomics, handling, and usability in realistic scenarios.22 This is augmented by more formal Expeditionary Operational Assessments (EOAs), where units test the systems in field training environments to provide data-driven analysis and direct user feedback.24 This iterative process is crucial; it allows program managers and industry designers to make “simple design changes” based on real-world input, ensuring the final product is not just a marvel of engineering but a practical and effective combat tool that has the confidence of the end-user.22 This approach directly addresses historical failures where technically impressive weapons were fielded that soldiers found difficult to use or maintain.
  • Materiel Release: Before a weapon can be officially fielded, it must receive a formal Materiel Release. This is a certification process managed by organizations like DEVCOM and the U.S. Army Test and Evaluation Command (ATEC), which confirms that the system has met all safety, performance, and supportability requirements.23 It is the final technical gate before production and deployment.

Phase 4: Production and Fielding

Following a successful T&E phase and a “down-select” decision, the program transitions to producing and delivering the new system to the force.

  • Contract Award and Production: The winning vendor is awarded a production contract, which is often structured to begin with Low-Rate Initial Production (LRIP).3 LRIP allows the manufacturer to establish and refine their production lines and quality control processes while producing a limited number of systems for further operational testing. Once these processes are proven, the DoD grants a Milestone C approval for Full-Rate Production, authorizing the manufacture of the weapon system in large quantities.
  • Phased Deployment: New small arms systems are rarely, if ever, fielded to the entire military simultaneously. The process is phased and prioritized. The first units to receive new equipment are typically high-priority, “first-to-fight” formations, such as the 82nd Airborne Division, the 101st Airborne Division, or other elements of the “close combat force”.9 From there, the system is gradually rolled out to other combat units, followed by combat support and service support units. This process can take many years, sometimes a decade or more, to complete. As a result, it is common for different units within the same service to be equipped with different generations of weapons long after a new system has been officially adopted.9
  • Full Life-Cycle Management: The adoption lifecycle does not conclude with fielding. It is a “cradle-to-grave” process that includes long-term sustainment, periodic modernization and upgrades, and eventual divestiture.25 Sustainment is managed by organizations like the Army Materiel Command (AMC) and the Tank-automotive and Armaments Command (TACOM).23 When a weapon is finally deemed obsolete or unserviceable, it is turned in to the Defense Logistics Agency (DLA) for demilitarization and disposal, completing the lifecycle.26

Section 3. Case Study: The Next Generation Squad Weapon (NGSW) Program

The NGSW program serves as the quintessential example of the modern U.S. small arms adoption lifecycle in action, embodying its philosophies, processes, and complexities.

  • The Need: The program was formally initiated in 2017, directly stemming from a congressional mandate and a series of Army studies, including the Small Arms Ammunition Configuration (SAAC) Study.3 These analyses identified a critical capability gap: the standard 5.56x45mm NATO cartridge fired by the M4 carbine and M249 SAW could not reliably defeat the advanced ceramic body armor being fielded by peer adversaries like Russia and China, particularly at ranges beyond 300 meters.5 This gap represented an unacceptable risk to the principle of technological overmatch, necessitating a revolutionary leap in infantry weapon performance.
  • The Process: The Army established ambitious requirements for a new, common system chambered in a government-specified 6.8mm projectile, intended to replace the M4, M249, and eventually the M240 machine gun.3
  • To accelerate the process, the Army utilized flexible OTA contracting, issuing a PPON that invited industry to propose integrated solutions encompassing a rifle (NGSW-R), an automatic rifle (NGSW-AR), and a novel ammunition design that could achieve the required high velocities and pressures.21
  • This competitive process resulted in the down-selection of three distinct technological approaches: SIG Sauer’s hybrid metallic-cased cartridge, True Velocity’s polymer-cased cartridge (paired with a General Dynamics/Beretta bullpup weapon), and Textron Systems’ cased-telescoped ammunition.3 This allowed the Army to test and evaluate fundamentally different solutions to the same problem.
  • Crucially, the Army ran a separate competition for the fire control system (NGSW-FC), recognizing that the optic was as important to achieving overmatch as the weapon itself. This competition was won by Vortex Optics with their XM157, a highly advanced optic integrating a laser rangefinder, ballistic computer, and environmental sensors.3 This demonstrates the modern “system-of-systems” approach, where the weapon is just one component of an integrated lethality package.
  • Over a 27-month period, the three competing systems underwent exhaustive testing and a series of Soldier Touch Points. This iterative feedback loop was critical, allowing for refinements to ergonomics, weight distribution, and user interfaces based on direct soldier input.3
  • In April 2022, after the comprehensive evaluation, the Army announced that SIG Sauer had been awarded the 10-year production contract.3
  • The Outcome: The selection of SIG Sauer’s platform resulted in the designation of the XM7 Rifle and the XM250 Automatic Rifle, firing the 6.8x51mm Common Cartridge. Paired with the XM157 Fire Control system, the NGSW represents a generational leap in the range, accuracy, and lethality of the individual soldier’s weapon.3 It is the physical embodiment of the “technological overmatch” philosophy, providing the close combat force with a capability that no other military currently possesses.

Section 4. Analysis of the U.S. Model: Strengths and Systemic Hurdles

The American small arms adoption lifecycle is a double-edged sword. Its meticulous, competitive, and soldier-focused nature produces exceptional weapon systems, but these strengths are counterbalanced by significant systemic weaknesses.

Pros:

  • Fosters Technological Innovation: The competitive, market-based model incentivizes private industry to invest heavily in research and development to gain a technological edge and win lucrative, multi-billion dollar contracts. This dynamic pushes the boundaries of what is possible in small arms design.6
  • Thoroughness and Rigor: The exhaustive T&E process, combined with the iterative feedback from Soldier Touch Points, ensures that the final product is not only technically compliant but also highly capable, reliable, and accepted by the end-user. This minimizes the risk of fielding a flawed or unpopular system.22
  • High-Performance End Product: The unwavering focus on achieving technological overmatch consistently results in weapon systems that are among the most advanced and capable in the world, providing U.S. forces with a tangible battlefield advantage.2
  • Enhanced Interoperability: Despite its bureaucratic nature, the JCIDS process enforces a joint-force perspective, promoting standardization of systems and ammunition across the DoD. This simplifies logistics, reduces training burdens, and enhances operational effectiveness in joint environments.11

Cons:

  • Bureaucratic Slowness and Protracted Timelines: The multi-layered review and approval process, particularly the JCIDS framework, is incredibly slow and cumbersome. Major acquisition programs frequently take a decade or more to move from initial concept to first unit equipped, a timeline that struggles to keep pace with the rapid evolution of threats and technology.9
  • Immense Cost: The combination of funding multiple competitive prototypes, conducting extensive and lengthy testing, and pursuing cutting-edge, often unproven, technologies makes U.S. small arms programs exceptionally expensive. These high costs can limit the total number of systems procured and place significant strain on defense budgets.29
  • Inherent Risk Aversion: The enormous cost, long timelines, and high public and political visibility of major defense acquisition programs can foster a culture of profound risk aversion within the procurement bureaucracy. This can lead to a preference for incremental improvements over truly revolutionary (but potentially higher-risk) concepts, and can stifle the adoption of innovative solutions from non-traditional defense contractors.10
  • Program Instability and Political Interference: U.S. acquisition programs are highly vulnerable to the annual congressional budget cycle. Shifting political priorities, partisan budget disputes, and the frequent use of stopgap funding measures known as Continuing Resolutions (CRs) create significant instability. This uncertainty makes long-term planning difficult for both the DoD and industry, and can lead to program delays, cancellations, or “death by a thousand cuts” as funding is slowly reduced over time.6

Part II: The Russian Approach: State-Directed Evolution of a Legacy

The Russian Federation’s methodology for small arms adoption stands in stark contrast to the American model. It is a system forged in the crucible of Soviet industrial planning and the doctrinal necessity of equipping a massive, conscript-based military. This legacy informs a philosophy that prioritizes unwavering reliability, operational simplicity, and the capacity for mass production over the pursuit of the absolute technological cutting edge. The process is centralized, top-down, and executed through a state-controlled defense industry, resulting in a lifecycle that is more direct but also more insular and path-dependent than its U.S. counterpart.

Section 1. Doctrinal and Industrial Philosophy: Reliability, Simplicity, and Mass

The Russian approach is guided by a pragmatic philosophy shaped by its unique military history and industrial structure. It is a system designed for resilience and scale, where the individual weapon is viewed as a robust tool for a vast army rather than a high-tech solution for a specialized force.

Core Philosophy of “Good Enough”

The foundational principle of Russian small arms doctrine is the production of weapons that are supremely reliable, simple to operate and maintain, and cost-effective enough to be manufactured in vast quantities.31 This “good enough” philosophy is a direct inheritance from the Soviet era, which required weapons that could be effectively used by minimally trained conscripts and could function flawlessly in the harshest environmental conditions, from the arctic cold to desert dust. While Western design often seeks to maximize performance, Russian design seeks to minimize failure. This results in a preference for proven mechanisms, generous operating tolerances, and evolutionary, rather than revolutionary, design changes. The weapon is expected to work every time, for everyone, everywhere, and this doctrinal imperative takes precedence over achieving marginal gains in accuracy or ergonomics through complex or delicate mechanisms.32

The State-Controlled Industrial Model (OPK)

Unlike the competitive commercial marketplace in the U.S., the Russian defense-industrial complex (known by the Russian acronym OPK) is dominated by large, state-owned or state-controlled corporations.33 The most prominent of these is Rostec, a state corporation that acts as a holding company for hundreds of defense and high-tech enterprises. Key small arms developers fall under this umbrella, including the iconic Kalashnikov Concern (the primary producer of assault rifles), TsNIITochMash (a central research institute specializing in ammunition and special-purpose weapons), and the KBP Instrument Design Bureau (a developer of high-precision weapons and pistols).33

These entities are not independent commercial competitors in the Western sense; they are instruments of state policy. They operate within a managed economy, often heavily subsidized by the government, with a mandate to fulfill state requirements rather than to maximize shareholder profit.33 This structure allows the Kremlin to direct industrial priorities, ramp up production to a “war economy” footing during conflicts, and sustain production lines for strategically important systems even when they are not profitable.33

The relationship between the state and these design bureaus is deeply intertwined. The success of a design bureau is measured by its ability to secure state orders and have its designs officially adopted by the military. This creates a form of competition, but it is a competition for state favor and resources within a closed system, not a competition for market share in an open one.

Centralized, Top-Down Requirements

The requirements generation process in Russia is a direct, top-down affair. The Ministry of Defence, guided by the national military doctrine, identifies a need and issues a requirement directly to one or more of the state design bureaus.37 There is no equivalent to the complex, bottom-up, consensus-building JCIDS process. The state is the sole customer and the ultimate arbiter of what is needed. These requirements are formalized within long-term State Armament Programmes (GPV), which outline modernization priorities over a decade, and are funded through annual State Defence Orders (GOZ).39 This centralized system can, in theory, be much faster and more decisive than the American process, as it bypasses inter-service debate and lengthy bureaucratic validation cycles.

This state-centric model is profoundly shaped by the legacy of its most successful product. The global success and ubiquity of the Kalashnikov rifle platform have created a powerful institutional inertia that both enables and constrains the Russian adoption system. The entire military apparatus—from training manuals and maintenance depots to the muscle memory of generations of soldiers—is built around the AK. Consequently, while Russian design bureaus have produced technologically advanced and innovative concepts over the years, such as the hyper-burst AN-94 or the balanced-recoil AEK-971, these systems have consistently failed to achieve widespread adoption.41 They have been relegated to niche roles within special forces units primarily because their increased complexity and cost were deemed unjustifiable for a mass-issue service rifle, especially when vast stockpiles of perfectly functional older AK-variants remained in reserve.42 The most recent standard-issue rifle, the AK-12, is not a revolutionary departure but a modernized AK-74, featuring ergonomic and modularity upgrades like Picatinny rails, an improved safety, and an adjustable stock.41 This path demonstrates that the Russian adoption lifecycle is less about discovering the next revolutionary rifle and more about perfecting the current one. This path-dependency ensures logistical simplicity and leverages existing industrial infrastructure, but it also risks technological stagnation when faced with an adversary willing to make a revolutionary leap, such as the U.S. adoption of an entirely new intermediate caliber with the NGSW program.

Section 2. The Lifecycle Framework: The Centrality of Design Bureaus and State Trials

The Russian adoption lifecycle is a more linear and state-controlled process than its American counterpart. It is centered on the technical expertise of the design bureaus and culminates in a rigorous, state-administered final examination known as State Trials.

Phase 1: Requirement and Design

The process begins when the Russian Ministry of Defence (MoD) identifies a need, based on its analysis of future threats and the performance of existing equipment, and issues a formal requirement.45 This requirement is then passed to the state’s primary design bureaus. Often, multiple bureaus are tasked with developing competing prototypes, fostering a degree of internal competition within the state-controlled system. For example, the competition to select a new service rifle for the Ratnik future soldier program pitted the Kalashnikov Concern’s AK-12 against the A-545, a design originating from the Degtyarev Plant.44 These bureaus have specialized areas of expertise; Kalashnikov is the leader in standard assault rifles, while TsNIITochMash focuses on specialized systems, such as silenced weapons like the VSS Vintorez and AS Val, and the development of new ammunition types.35

Phase 2: Prototyping and Internal Evaluation

Once tasked, the design bureaus begin an internal process of design, prototyping, and refinement. This is an iterative process where initial concepts are built, tested, and improved based on the results. As seen in the development of the Lebedev series of pistols, a design may go through several iterations (e.g., from PL-14 to PL-15) as flaws are identified and enhancements are made.48 During this phase, the bureaus may solicit limited feedback from elite end-users, such as Spetsnaz (special forces) or units of the Rosgvardiya (National Guard).48 A recent and prominent example of this is the testing of the new AM-17 compact assault rifle within the “special military operation zone” in Ukraine. Feedback from military personnel in an active combat environment led to direct modifications of the design, demonstrating a pragmatic approach to leveraging real-world experience to refine a weapon before it enters formal trials.50

Phase 3: State Trials and Formal Adoption

This phase is the pivotal gateway to service adoption. Once a design bureau is confident in its prototype, it is submitted for formal State Trials.

  • State Trials: These are not internal company tests but a rigorous, comprehensive evaluation conducted by the state to verify that the weapon meets all of the MoD’s established tactical and technical specifications.50 The trials are designed to push the weapon to its limits under a variety of stressful conditions, such as extreme temperatures, heavy contamination with dirt and sand, and sustained high rates of fire, to ensure it meets the Russian military’s stringent standards for durability and reliability.51 The successful completion of State Trials is the single most important milestone in the adoption process.50
  • Formal Adoption and Designation: If a weapon successfully passes State Trials, a recommendation for adoption is made to the government. The final step is the issuance of a formal government decree officially adopting the weapon into service with the Armed Forces.43 Upon adoption, the weapon is assigned an official designation by the Main Missile and Artillery Directorate (GRAU). This GRAU index (e.g., 6P70 for the AK-12) becomes its formal military identifier, distinct from its factory or design name.53

Phase 4: Production and Fielding

With the weapon officially adopted, the lifecycle moves to mass production and distribution to the armed forces.

  • Production: Production is carried out at state-owned manufacturing plants, such as the Kalashnikov facilities in Izhevsk, based on quantities and timelines specified in the annual State Defence Orders (GOZ).34 The state-controlled nature of the industry allows the government to directly manage production priorities and output volume.
  • Fielding: Similar to the U.S. model, new Russian weapon systems are typically fielded in a phased manner. The first recipients are almost always elite, high-readiness units such as the VDV (Airborne Troops), Naval Infantry, and Spetsnaz formations.9 The distribution of the Ratnik combat system followed this pattern, with these premier units being equipped first.54 However, the process of equipping the broader ground forces is often extremely slow and incomplete. Due to the immense size of the Russian military, budgetary constraints, and the existence of vast stockpiles of older but still serviceable weapons, it can take many years for a new rifle to see widespread use. It is common to see regular motorized rifle units still equipped with older AK-74s, or even mobilized personnel with obsolete weapons like the Mosin-Nagant, long after a new system like the AK-12 has been adopted.41

Section 3. Case Study: The Ratnik Combat System and the AK-12

The Ratnik (“Warrior”) program and the associated adoption of the AK-12 rifle provide a clear illustration of the modern Russian adoption lifecycle, highlighting its priorities, competitive dynamics, and ultimate preference for evolutionary pragmatism.

  • The Need: The Ratnik program was Russia’s comprehensive effort to modernize the individual soldier, analogous to Western “future soldier” programs. It was conceived as a holistic system integrating advanced body armor (6B45), helmets (6B47), and modern communication and navigation equipment (“Strelets” system).54 A critical component of this system was a new, modernized service rifle to replace the aging AK-74M.55
  • The Process: The rifle competition for the Ratnik program saw two main contenders: the Kalashnikov Concern’s AK-12, a project to thoroughly modernize the AK platform, and the A-545 from the Degtyarev Plant, which was a refined version of the earlier AEK-971 featuring a sophisticated balanced-recoil system designed to significantly reduce felt recoil and improve controllability in automatic fire.44
  • The trials were protracted. The initial version of the AK-12 was heavily criticized by the military for its cost and perceived lack of significant improvement over the AK-74M, forcing Kalashnikov to go back and extensively redesign the rifle into a more practical and cost-effective form.
  • Ultimately, the Russian MoD made a pragmatic choice that perfectly encapsulates its underlying philosophy. The redesigned AK-12, which was simpler, more familiar to the troops, and less expensive to produce, was selected as the new standard-issue rifle for general-purpose forces. In a telling compromise, the more complex and expensive A-545 was also adopted, but only in limited numbers for issuance to special forces units who could better leverage its performance advantages and manage its increased complexity.41 This dual-track adoption demonstrates a clear prioritization of cost and simplicity for the mass army, while still providing advanced capabilities to elite units.
  • The Outcome: The Ratnik system as a whole represents a significant and necessary modernization of the Russian soldier’s individual equipment. However, its small arms component, the AK-12, is a clear example of evolutionary, not revolutionary, development. It enhances the proven AK platform with modern features but does not fundamentally change its operation or capabilities in the way a new caliber would. Furthermore, the fielding of both the Ratnik gear and the AK-12 has been inconsistent. While elite units have been largely equipped, many regular and mobilized units deployed in Ukraine continue to be seen with older AK-74s, highlighting the logistical and financial challenges of modernizing such a large force.41

Section 4. Analysis of the Russian Model: Strengths and Endemic Weaknesses

The Russian state-directed adoption lifecycle possesses a unique set of advantages and disadvantages that are a direct result of its centralized structure and doctrinal priorities.

Pros:

  • Simplicity and Potential for Speed: When the state deems a program a high priority, the top-down, centralized process can be significantly faster and less bureaucratically encumbered than the multi-layered U.S. system. It eliminates the need for inter-service consensus and lengthy public contracting procedures.
  • Cost-Effectiveness and Mass Production: The focus on evolutionary upgrades of proven designs, combined with state control over pricing and production, keeps manufacturing costs relatively low. This enables the procurement of weapons in large quantities, consistent with the doctrine of equipping a mass army.52
  • Rapid Production Scaling: The state-managed “war economy” model allows the government to direct the OPK to rapidly increase production during a conflict, retooling factories and running them 24/7, unconstrained by the profit motives or market limitations that affect Western commercial firms.33
  • Exceptional Reliability: The doctrinal emphasis on simplicity and the rigorous nature of State Trials ensure that the weapons that are ultimately fielded are exceptionally durable, tolerant of abuse and neglect, and reliable in the most extreme conditions.31

Cons:

  • Stifled Innovation: The lack of genuine market competition, combined with the powerful institutional inertia of the Kalashnikov platform, creates a system that is resistant to radical innovation. The path of least resistance is to incrementally improve the existing design rather than to invest in high-risk, potentially revolutionary new concepts.42
  • Systemic Corruption: The opaque nature of the Russian defense budget and the GOZ procurement process creates significant opportunities for corruption. This can lead to the misallocation of funds, inflated costs, and compromises in the quality of materials and manufacturing, ultimately impacting the performance of the final product.39
  • Inconsistent Quality Control: While the underlying designs are famously robust, the pressures of meeting state-ordered production quotas, especially during wartime, combined with supply chain disruptions and a less-skilled workforce, can lead to significant inconsistencies in manufacturing quality and final assembly.40
  • Vulnerability to Sanctions: The Russian OPK, despite its legacy, has a critical dependence on foreign-made components, particularly in high-tech areas like microelectronics for optics and precision machine tools for advanced manufacturing. International sanctions can sever these supply chains, forcing Russian industry to simplify designs, find lower-quality domestic or third-party substitutes, or halt production of its most advanced systems altogether.40

Part III: Comparative Analysis and Future Outlook

The small arms adoption lifecycles of the United States and the Russian Federation are not merely different sets of procedures; they are reflections of fundamentally divergent approaches to warfare, industrial organization, and technological development. The U.S. system is an expensive, slow, but innovative engine designed to produce a decisive technological edge. The Russian system is a pragmatic, state-controlled machine designed to equip a massive force with reliable, familiar tools. The realities of modern, high-intensity conflict and the rapid pace of technological change are now challenging the core assumptions of both models.

Section 1. A Juxtaposition of Lifecycles: Process, Pace, and Priorities

The fundamental differences between the two systems can be most clearly understood through a direct, side-by-side comparison of their key characteristics. The following table distills the detailed analysis from the preceding sections into a concise framework, highlighting the stark contrasts in philosophy and execution that define each nation’s approach. This allows for a rapid, at-a-glance understanding of the core dichotomies that drive the two systems, such as the tension between market competition and state directive, or the pursuit of technological overmatch versus the necessity of mass production.

Feature CategoryUnited StatesRussian Federation
Primary DriverAddressing a “Capability Gap” against a peer adversary.6Fulfilling a state-defined need, often an incremental modernization of existing systems.37
Governing PhilosophyTechnological Overmatch: Seeking a decisive, qualitative edge.1Mass & Reliability: Equipping a large force with simple, robust, “good enough” weapons.31
Requirements ProcessJoint Capabilities Integration and Development System (JCIDS): Bottom-up, consensus-driven, bureaucratic.12Ministry of Defence Directive: Top-down, centralized, and direct.38
Industry ModelCompetitive Free Market: Multiple private companies bid on government contracts.6State-Directed Economy: State-owned design bureaus fulfill government orders.33
Key Decision AuthorityJoint Requirements Oversight Council (JROC) for requirements; Program Executive Office (PEO) for acquisition.12Ministry of Defence, culminating in a government decree for adoption.43
Testing PhilosophyIterative & User-Focused: Extensive lab tests plus continuous “Soldier Touch Points”.22Culminating & Verificational: Rigorous, state-controlled “State Trials” as a final exam.50
Pace & TimelineExtremely slow and protracted; often 10+ years from concept to fielding.9Can be rapid when prioritized by the state, but often slow due to funding/bureaucracy.
Typical CostExtremely high, driven by R&D, competition, and advanced technology.29Relatively low, focused on leveraging existing designs and economies of scale.52
End ResultA technologically advanced, often complex “system of systems” for select forces.3An evolutionary, robust, and familiar weapon intended for mass fielding.41

Section 2. The Impact of Modern Warfare: Lessons from Ukraine and Beyond

The ongoing war in Ukraine has served as a brutal, real-world laboratory for modern conventional warfare, providing invaluable lessons that are forcing both the U.S. and Russia to re-evaluate their doctrines, technologies, and procurement priorities.

  • The Transparent Battlefield: Perhaps the most profound lesson is the emergence of the “transparent battlefield.” The unprecedented proliferation of unmanned aerial systems (UAS)—ranging from inexpensive, commercially-derived first-person view (FPV) drones used as precision munitions to sophisticated, long-endurance intelligence, surveillance, and reconnaissance (ISR) platforms—has made it exceedingly difficult for ground forces to achieve surprise or to mass without being detected and targeted.60 This reality has immediate implications for small arms and infantry tactics. It elevates the importance of signature reduction, making effective suppressors an essential piece of equipment rather than an optional accessory, as their ability to mask a soldier’s position from acoustic detection is critical for survival.28 It also creates a new requirement for individual soldiers to be able to engage and defeat small, fast-moving aerial threats, a task for which traditional iron sights are wholly inadequate.
  • U.S. Lessons Learned: For the United States and its allies, the conflict has been a sobering reminder of the realities of industrial-scale warfare. Observers note that the U.S. military’s emphasis on maneuver warfare is being challenged by the Russian model of attritional, artillery-centric combat.60 The conflict has underscored the immense consumption rates of ammunition and equipment in a peer-level fight, calling into question the sustainability of the Western model, which often favors small quantities of expensive, “exquisite” systems over large stockpiles of more basic munitions.62 The war validates the U.S. pursuit of networked warfare and precision fires, but it also highlights a critical need for a more agile and responsive acquisition system that can rapidly field countermeasures to new threats, like the swarms of FPV drones, and for an industrial base capable of surging production to meet the demands of a protracted conflict.60
  • Russian Lessons Learned: Russia has been forced to learn and adapt under the extreme pressures of combat and international sanctions. The war has starkly exposed the endemic weaknesses in its logistics, the inconsistent quality of its mass-produced equipment, and the shortcomings of its rigid, centralized command structure.40 However, it has also demonstrated Russia’s considerable capacity for adaptation and resilience. The Russian military-industrial complex has shifted to a war footing, retooling civilian factories to mass-produce drones and simplifying weapon designs to accelerate output.60 Russian forces on the ground have adapted their tactics, learning to integrate drones directly into their artillery kill chains and adopting a brutal but effective attritional model that leverages their advantage in mass over Ukraine’s qualitative edge.60 This real-world combat experience is already feeding back into their development cycle, as evidenced by the field-testing of new systems like the AM-17 rifle in Ukraine, allowing for rapid, data-driven design refinements.50

Section 3. The Future Battlefield: Networked Lethality and Systemic Adaptation

The infantry weapon of the future will be defined less by its mechanical properties and more by its integration into a wider digital network. The trends in fire control, connectivity, and materials science are poised to trigger the most significant shift in small arms capability since the advent of the assault rifle.

  • The Rise of the Smart Weapon and Networked Sights: The future of small arms is not the rifle itself, but the rifle as a node in a networked system. The U.S. Army’s XM157 NGSW-Fire Control is the vanguard of this transformation.28 It is not merely an optic; it is an integrated combat solution. By combining a variable-power magnified optic with a laser rangefinder, a ballistic calculator, a suite of atmospheric sensors, and a digital overlay, the XM157 automatically generates a disturbed reticle that gives the soldier a precise, corrected aiming point for a target at any range.28 This technology dramatically increases the first-round hit probability for the average soldier, effectively extending their lethal range and compensating for errors in range estimation and environmental factors.
  • Connectivity, AI, and the Squad as a Sensor Network: The next logical step, already in development, is to network these smart sights. Through systems like the U.S. Army’s Integrated Visual Augmentation System (IVAS), data from an individual soldier’s sight—such as the location of a lased target—can be instantly shared across the squad and pushed to higher echelons or other assets, such as loitering munitions or artillery.28 This transforms the infantry squad into a distributed sensor-shooter network, drastically compressing the kill chain. Artificial intelligence will play an increasing role in this ecosystem, assisting with automated target detection and identification, prioritizing threats, and deconflicting engagements to prevent fratricide.63
  • Advanced Materials and Manufacturing: Concurrent advances in materials science and manufacturing will further revolutionize small arms design. The development of new alloys, polymers, and composites will enable the creation of lighter, stronger, and more durable weapons.64 Additive manufacturing, or 3D printing, holds the potential to disrupt the traditional logistics chain by allowing for the on-demand fabrication of spare parts, specialized components, or even entire weapon receivers in forward-deployed locations, significantly enhancing operational readiness and enabling rapid design iteration.6

Implications for Future Adoption Lifecycles:

  • For the United States: The “system-of-systems” approach pioneered by the NGSW program is the clear path forward. Future U.S. small arms adoptions will be less about selecting a firearm in isolation and more about acquiring a fully integrated package of weapon, ammunition, fire control, and network connectivity. The primary challenge for the U.S. will be to reform its slow, risk-averse procurement process to make it agile enough to keep pace with the rapid, software-driven evolution of electronics and AI, which have much shorter development cycles than traditional hardware.8
  • For the Russian Federation: Russia faces the significant risk of being left behind in this technological arms race. While it continues to produce excellent mechanical firearms and is developing integrated soldier systems like Ratnik, its small arms remain fundamentally analog devices. The primary challenge for Russia will be to develop and integrate advanced electro-optics and networking capabilities into its platforms without compromising its core doctrinal tenets of simplicity and reliability. This challenge is magnified by international sanctions that severely restrict its access to the Western-made high-end microelectronics and processors that are essential for developing advanced fire control systems.57

Conclusion and Strategic Recommendations

The analysis of the United States and Russian small arms adoption lifecycles reveals two systems that are logical products of their distinct strategic cultures, industrial capacities, and geopolitical realities. Neither system is inherently superior; each is optimized to achieve different objectives and possesses a unique profile of strengths and weaknesses.

The U.S. system is a complex, market-driven engine designed to produce revolutionary technological breakthroughs. Its slow, deliberative, and costly nature is a direct consequence of its ambition to achieve and maintain “technological overmatch.” The result, exemplified by the NGSW program, is a weapon system that can redefine battlefield dynamics by providing individual soldiers with an unprecedented leap in lethality. However, this system’s ponderous pace and immense expense make it vulnerable to rapidly emerging, low-cost threats and the attritional demands of high-intensity warfare.

The Russian system is a state-directed apparatus designed to sustain a massive military force with reliable, cost-effective, and familiar equipment. Its philosophy of evolutionary design, centered on the proven Kalashnikov platform, ensures logistical simplicity and the ability to produce weapons at scale. The conflict in Ukraine has demonstrated the resilience of this mass-based approach, showing that quantity has a quality all its own. However, this same system suffers from a path-dependent inertia that stifles innovation, leaving it at a growing disadvantage in a technological competition and vulnerable to supply chain disruptions for critical components.

The conflict in Ukraine offers a stark preview of future warfare, where the technological sophistication of Western-backed systems collides with the attritional resilience of Russian mass. The lessons are clear: future success will require a synthesis of both quality and quantity, of technological superiority and industrial endurance.

Based on this analysis, the following strategic recommendations are offered for the United States and its allies:

  1. Accelerate Procurement Reform for Agility: The DoD must aggressively continue efforts to streamline the acquisition process, particularly for rapidly evolving technologies like software, AI, and counter-UAS systems. Expanding the use of flexible authorities like OTAs and creating pathways for non-traditional innovators to bridge the “valley of death” are critical to ensuring that the U.S. can field new capabilities at the speed of relevance, not at the pace of bureaucracy.
  2. Invest in Scalable Industrial Capacity: The pursuit of “exquisite” overmatch capabilities must be balanced with a realistic assessment of the logistical demands of a peer-level conflict. The U.S. and its allies must invest in modernizing and expanding the industrial base to ensure it can surge production of key munitions, small arms, and spare parts. This includes securing supply chains for critical materials and re-evaluating the trade-offs between a few highly advanced systems and larger quantities of “good enough” platforms.
  3. Prioritize the Networked Soldier: The future of infantry lethality lies in the network. Investment should continue to prioritize the development and fielding of integrated systems like the NGSW and IVAS, which transform the individual soldier from an isolated shooter into a networked sensor and effector. Doctrine, training, and leader development must evolve to fully exploit the capabilities of these new systems.
  4. Maintain Vigilant Intelligence of Adversary Adaptation: Russia’s ability to adapt its industrial base and tactics under the extreme pressure of war should not be underestimated. The U.S. and its partners must maintain a continuous and detailed intelligence effort to monitor Russian technological developments, industrial adaptations, and the lessons they are incorporating from the battlefield. Understanding how an adversary leverages “good enough” technology at scale is crucial for developing effective countermeasures and avoiding strategic surprise.

If you find this post useful, please share the link on Facebook, with your friends, etc. Your support is much appreciated and if you have any feedback, please email me at in**@*********ps.com. Please note that for links to other websites, we are only paid if there is an affiliate program such as Avantlink, Impact, Amazon and eBay and only if you purchase something.


Works cited

  1. Achieved Overmatch: A Potential Future for AI in the Army, accessed August 15, 2025, https://www.armyupress.army.mil/Portals/7/military-review/Archives/English/JA-25/Achieved-Overmatch/Achieved-Overmatch-ua.pdf
  2. Project Convergence: Achieving Overmatch by Solving Joint Problems, accessed August 15, 2025, https://ndupress.ndu.edu/Media/News/News-Article-View/Article/2807194/project-convergence-achieving-overmatch-by-solving-joint-problems/
  3. Next Generation Squad Weapon – Wikipedia, accessed August 15, 2025, https://en.wikipedia.org/wiki/Next_Generation_Squad_Weapon
  4. Army Making Big Push to Update Small Arms – National Defense Magazine, accessed August 15, 2025, https://www.nationaldefensemagazine.org/articles/2022/10/28/army-making-big-push-to-update-small-arms
  5. – UNITED STATES MILITARY SMALL ARMS REQUIREMENTS – GovInfo, accessed August 15, 2025, https://www.govinfo.gov/content/pkg/CHRG-115shrg34118/html/CHRG-115shrg34118.htm
  6. What would it take for the US military to adopt a new small arms system, and what are the biggest hurdles to making that happen? – Quora, accessed August 15, 2025, https://www.quora.com/What-would-it-take-for-the-US-military-to-adopt-a-new-small-arms-system-and-what-are-the-biggest-hurdles-to-making-that-happen
  7. DOD Acquisition Processes – Clinton White House, accessed August 15, 2025, https://clintonwhitehouse5.archives.gov/pcscb/rmo_dod.html
  8. Defense Department’s Updated Procurement Process Allows Quicker Access to Private Sector AI Products – Wiley Rein LLP, accessed August 15, 2025, https://www.wiley.law/newsletter-Defense-Departments-Updated-Procurement-Process-Allows-Quicker-Access-to-Private-Sector-AI-Products
  9. How long has it taken for various militaries to roll out new equipment over the years? Who gets them first? : r/WarCollege – Reddit, accessed August 15, 2025, https://www.reddit.com/r/WarCollege/comments/10csfab/how_long_has_it_taken_for_various_militaries_to/
  10. Hearing Wrap Up: Government Procurement Process Must Modernize to Boost Defense Innovation – United States House Committee on Oversight and Accountability, accessed August 15, 2025, https://oversight.house.gov/release/hearing-wrap-up-government-procurement-process-must-modernize-to-boost-defense-innovation/
  11. Joint Service Small Arms Program – Wikipedia, accessed August 15, 2025, https://en.wikipedia.org/wiki/Joint_Service_Small_Arms_Program
  12. Defense Primer: Joint Capabilities Integration and Development …, accessed August 15, 2025, https://www.congress.gov/crs-product/IF12817
  13. Joint Capabilities Integration and Development System – Wikipedia, accessed August 15, 2025, https://en.wikipedia.org/wiki/Joint_Capabilities_Integration_and_Development_System
  14. XM17 Modular Handgun System competition – Wikipedia, accessed August 15, 2025, https://en.wikipedia.org/wiki/XM17_Modular_Handgun_System_competition
  15. Improving the JCIDS Process | www.dau.edu, accessed August 15, 2025, https://www.dau.edu/library/damag/november-december2018/improving-jcids-process
  16. DODIG-2013-131 Army Requirement to Acquire Individual Carbine Not Justified – Department of Defense, accessed August 15, 2025, https://media.defense.gov/2013/Sep/16/2001713304/-1/-1/1/DODIG-2013-131.pdf
  17. New Report: Abolish JCIDS, Replace with Bottom-Up Approach, accessed August 15, 2025, https://www.airandspaceforces.com/new-report-abolish-jcids-joint-requirements-process/
  18. GAO-22-104432, WEAPON SYSTEM REQUIREMENTS: Joint Staff Lacks Reliable Data on the Effectiveness of Its Revised Joint Approval Pr, accessed August 15, 2025, https://www.gao.gov/assets/gao-22-104432.pdf
  19. PEO Soldier – Wikipedia, accessed August 15, 2025, https://en.wikipedia.org/wiki/PEO_Soldier
  20. Project Manager Soldier Lethality (PM SL), accessed August 15, 2025, https://www.peosoldier.army.mil/Program-Offices/Project-Manager-Soldier-Lethality/
  21. Prototype Project Opportunity Notice (PPON) for Next Generation Squad Weapons (NGSW), accessed August 15, 2025, https://sam.gov/opp/e31a67310e833d2d5fcbcdc3aaa54897/view
  22. Army moving forward with Next Generation Squad Weapon program | Article, accessed August 15, 2025, https://www.army.mil/article/264799/army_moving_forward_with_next_generation_squad_weapon_program
  23. Some Background On How The Military Procures Equipment | Soldier Systems Daily, accessed August 15, 2025, https://soldiersystems.net/2025/03/20/some-background-on-how-the-military-procures-equipment/
  24. Revolutionizing operational testing: The Next Generation Squad …, accessed August 15, 2025, https://www.army.mil/article/286308/revolutionizing_operational_testing_the_next_generation_squad_weapon_expeditionary_operational_assessment
  25. Army embraces full life-cycle approach to modernizing and sustaining equipment, accessed August 15, 2025, https://www.army.mil/article/251307/army_embraces_full_life_cycle_approach_to_modernizing_and_sustaining_equipment
  26. Small Arms – DLA, accessed August 15, 2025, https://www.dla.mil/Disposition-Services/DDSR/Turn-In/Turn-In-Toolbox/Small-Arms/
  27. Joint Small Arms Technology Development Strategy for Joint Service Small Arms Science and Technology Investments – DTIC, accessed August 15, 2025, https://apps.dtic.mil/sti/tr/pdf/AD1004913.pdf
  28. Small arms sights and fire control systems developments, accessed August 15, 2025, https://euro-sd.com/2025/02/articles/42724/small_arms_sights_and_fire_control_systems/
  29. Office of the Under Secretary of Defense (Comptroller)/Chief Financial Officer Program Acquisition Cost by Weapon System March 2, accessed August 15, 2025, https://comptroller.defense.gov/Portals/45/Documents/defbudget/FY2025/FY2025_Weapons.pdf
  30. Slow and Steady is Losing the Defense Acquisition Race – Government Executive, accessed August 15, 2025, https://www.govexec.com/feature/slow-and-steady-losing-defense-acquisition-race/
  31. Rusty Weapons: Myths About Russian Small Arms | Weapons with ‪@StarskyUA‬ – YouTube, accessed August 15, 2025, https://www.youtube.com/watch?v=aewVPa9mAh8
  32. Russian Military Strategy: Core Tenets and Operational Concepts – CNA.org., accessed August 15, 2025, https://www.cna.org/reports/2021/08/Russian-Military-Strategy-Core-Tenets-and-Operational-Concepts.pdf
  33. Arms industry of Russia – Wikipedia, accessed August 15, 2025, https://en.wikipedia.org/wiki/Arms_industry_of_Russia
  34. Kalashnikov Concern – Wikipedia, accessed August 15, 2025, https://en.wikipedia.org/wiki/Kalashnikov_Concern
  35. TsNIITochMash – Wikipedia, accessed August 15, 2025, https://en.wikipedia.org/wiki/TsNIITochMash
  36. KBP Instrument Design Bureau – Wikipedia, accessed August 15, 2025, https://en.wikipedia.org/wiki/KBP_Instrument_Design_Bureau
  37. How Soviet Union designed and adopted small arms and other weapons – YouTube, accessed August 15, 2025, https://www.youtube.com/watch?v=L99pKBX6Cc8
  38. Russia’s Role as an Arms Exporter – Chatham House, accessed August 15, 2025, https://www.chathamhouse.org/sites/default/files/publications/research/2017-03-20-russia-arms-exporter-connolly-sendstad.pdf
  39. Defense Acquisition in Russia and China – RAND, accessed August 15, 2025, https://www.rand.org/content/dam/rand/pubs/research_reports/RRA100/RRA113-1/RAND_RRA113-1.pdf
  40. Russia’s struggle to modernize its military industry | Identifying the weaknesses in Russia’s military-industrial complex – Chatham House, accessed August 15, 2025, https://www.chathamhouse.org/2025/07/russias-struggle-modernize-its-military-industry/identifying-weaknesses-russias-military
  41. List of equipment of the Russian Ground Forces – Wikipedia, accessed August 15, 2025, https://en.wikipedia.org/wiki/List_of_equipment_of_the_Russian_Ground_Forces
  42. We often hear about the west, but where has Russian small arms development gone since the collapse of the USSR? – Reddit, accessed August 15, 2025, https://www.reddit.com/r/WarCollege/comments/fegp2m/we_often_hear_about_the_west_but_where_has/
  43. Kalashnikov: AK-12 Adopted by Rosgvardiya, accessed August 15, 2025, https://en.kalashnikovgroup.ru/news/kalashnikov-ak-12-adopted-by-rosgvardiya
  44. The Russian military wants to adopt this brand new Kalashnikov assault rifle, accessed August 15, 2025, https://uk.news.yahoo.com/russian-military-wants-adopt-brand-160957402.html
  45. Military doctrine of Russia – Wikipedia, accessed August 15, 2025, https://en.wikipedia.org/wiki/Military_doctrine_of_Russia
  46. Principles of Russian Military Thought | Ústav mezinárodních vztahů – Expertise to impact, accessed August 15, 2025, https://www.iir.cz/principles-of-russian-military-thought
  47. TsNIITochMash Offers Small Arms with High Export Potential – Kalashnikov Group, accessed August 15, 2025, https://en.kalashnikovgroup.ru/news/tsniitochmash-offers-small-arms-with-high-export-potential
  48. New Russian Pistols Vie for Military Adoption – Small Arms Defense …, accessed August 15, 2025, https://sadefensejournal.com/new-russian-pistols-vie-for-military-adoption/
  49. AK400, the new assault rifle model from the Kalashnikov Concern – All4Shooters.com, accessed August 15, 2025, https://www.all4shooters.com/en/shooting/pro-zone/concern-kalashnikov-ak-400-assault-rifle/
  50. Kalashnikov: AM-17 State Trials Completed – Kalashnikov Group, accessed August 15, 2025, https://en.kalashnikovgroup.ru/news/kalashnikov-am-17-state-trials-completed
  51. Adoption into service, authorization for operational use, and codification of new weapons and military equipment: The Ministry of Defence clarifies concepts and differences | MoD News, accessed August 15, 2025, https://mod.gov.ua/en/news/adoption-into-service-authorization-for-operational-use-and-codification-of-new-weapons-and-military-equipment-the-ministry-of-defence-clarifies-concepts-and-differences
  52. AKM and RPK Adopted by Army 65 Years Ago – Kalashnikov Group, accessed August 15, 2025, https://en.kalashnikovgroup.ru/news/akm-and-rpk-adopted-by-army-65-years-ago
  53. Main Missile and Artillery Directorate – Wikipedia, accessed August 15, 2025, https://en.wikipedia.org/wiki/Main_Missile_and_Artillery_Directorate
  54. ‘Ratnik’ system improving the battle space situation awareness, connectivity, survivability and combat effectiveness of Russian Army – International Defense Security & Technology, accessed August 15, 2025, https://idstch.com/military/army/ratnik-system-improving-battle-space-situation-awareness-connectivity-survivability-combat-effectiveness-russian-army/
  55. Ratnik: Russia’s Modern Warrior Program – Grey Dynamics, accessed August 15, 2025, https://greydynamics.com/ratnik-russias-modern-warrior-program/
  56. Ratnik (program) – Wikipedia, accessed August 15, 2025, https://en.wikipedia.org/wiki/Ratnik_(program)
  57. Russia’s struggle to modernize its military industry | Conclusion, accessed August 15, 2025, https://www.chathamhouse.org/2025/07/russias-struggle-modernize-its-military-industry/conclusion
  58. Corruption in the Russian Defense Sector – World Peace Foundation, accessed August 15, 2025, https://worldpeacefoundation.org/wp-content/uploads/2024/03/Russian-Defense-Corruption-Report-Beliakova-Perlo-Freeman-20180502-final.pdf
  59. The Impact of Sanctions and Alliances on Russian Military Capabilities – RUSI, accessed August 15, 2025, https://www.rusi.org/explore-our-research/publications/commentary/impact-sanctions-and-alliances-russian-military-capabilities
  60. What the US Army is learning from Russian losses in Ukraine, accessed August 15, 2025, https://taskandpurpose.com/tech-tactics/army-russia-ukraine-lessons-learned/
  61. A Long, Hard Year: Russia-Ukraine War Lessons Learned 2023 …, accessed August 15, 2025, https://publications.armywarcollege.edu/News/Display/Article/3890256/a-long-hard-year-russia-ukraine-war-lessons-learned-2023/
  62. CMV: The US is not ready for a peer/near peer war of attrition : r/changemyview – Reddit, accessed August 15, 2025, https://www.reddit.com/r/changemyview/comments/1bbmz86/cmv_the_us_is_not_ready_for_a_peernear_peer_war/
  63. The Future of the Battlefield – Office of the Director of National …, accessed August 15, 2025, https://www.dni.gov/index.php/gt2040-home/gt2040-deeper-looks/future-of-the-battlefield
  64. Advanced Materials and Manufacturing – Implications for Defence to 2040 | DST, accessed August 15, 2025, https://www.dst.defence.gov.au/publication/advanced-materials-and-manufacturing-%E2%80%93-implications-defence-2040

The History, Chemistry, and Strategic Imperative of Soviet Corrosive Ammunition

The decision by any military to adopt a particular ammunition technology is never made in a vacuum. It is the result of a complex interplay between historical experience, technological capability, strategic doctrine, and fundamental chemistry. The Soviet Union’s long-standing reliance on corrosive-primed ammunition is a quintessential example of this process. To comprehend this choice, one must first understand the chemical problem that Soviet ordnance experts, and their counterparts worldwide, were trying to solve. The story of corrosive ammunition does not begin with a choice for corrosion, but a choice against the critical failures of the preceding technology: mercuric primers.

1.1 A Brief History of Primer Evolution: From Mercury to Chlorate

The evolution of the firearm primer is a direct line from the unreliable external ignition of flintlocks to the self-contained, instantaneous reliability of the modern cartridge.1 The first major leap towards modern primers was the percussion cap, developed in the early 19th century. These small copper cups contained a shock-sensitive compound, almost universally mercury fulminate (Hg(CNO)2​), which provided a far more reliable ignition source than flint and steel.1 Inventors like Hiram Berdan and Edward Boxer further refined this concept by integrating the primer into a metallic cartridge case, creating the centerfire systems still in use today.1

However, as military technology transitioned from black powder to more powerful and less-fouling smokeless propellants in the late 19th century, two catastrophic flaws with mercury fulminate became apparent. The first was chemical instability. Fulminate of mercury was discovered to degrade over time, especially when stored in warm climates. While it could reliably ignite forgiving black powder even when partially degraded, it often failed to provide a powerful enough flash to consistently ignite the more stable smokeless powders. This led to an unacceptable rate of misfires and dangerous hang-fires (a delay between the firing pin strike and the cartridge firing).5 For a military, ammunition that cannot be trusted to fire after long-term storage is a logistical nightmare.

The second flaw was metallurgical. Upon detonation, the mercury in the primer would vaporize and, under immense pressure and heat, amalgamate with the zinc component of the brass cartridge case. This mercury-brass amalgam rendered the case extremely brittle and prone to cracking, making it unsafe and unsuitable for reloading.2 At a time when many armies, including the U.S. Army, reloaded spent cartridges for training and to conserve resources, this was a significant economic and logistical drawback.6

Faced with these mission-critical failures, ordnance departments worldwide sought a replacement. The solution was found in chlorate-based compounds. In 1898, the U.S. Army’s Frankford Arsenal, after experiencing the unreliability of mercuric primers, adopted a new non-mercuric formula based on potassium chlorate (KClO3​) as the primary oxidizer.5 This new primer composition, exemplified by the famous FA-70 primer, was exceptionally stable in long-term storage and provided a powerful, reliable ignition flash for smokeless powders.6 It solved the problems of the mercuric era, but in doing so, it introduced a new, well-understood, and—in the eyes of military planners—manageable problem: corrosive residue.

1.2 The Reaction and its Residue: The Science of Salt-Induced Rust

The term “corrosive ammunition” is technically a misnomer. The unfired cartridge is inert and harmless to a firearm.8 The corrosive potential is created only after ignition, as a direct byproduct of the primer’s chemical reaction. A typical chlorate-based primer consists of three main components: a shock-sensitive explosive initiator (like lead styphnate), a fuel (like antimony sulfide), and a powerful oxidizer to provide the oxygen for the intense, rapid burn.4 In corrosive primers, this oxidizer is potassium chlorate (KClO3​) or, in some formulations, sodium perchlorate (NaClO4​).9

When the firing pin strikes the primer, it crushes the compound and initiates detonation. The potassium chlorate decomposes in a violent exothermic reaction, releasing its abundant oxygen atoms to fuel the flash that ignites the main powder charge. The chemical equation for this decomposition is:

2KClO3​(s)→2KCl(s)+3O2​(g)

The critical byproduct of this reaction is potassium chloride (KCl), a stable salt left behind as a fine, crystalline residue.9 This salt is chemically very similar to sodium chloride (NaCl), or common table salt, and it is the sole agent of corrosion.5

The mechanism of corrosion is often misunderstood. The potassium chloride salt is not, in itself, an acid that “eats” the steel of the firearm.11 Instead, its destructive power comes from its hygroscopic nature. Like table salt, KCl is extremely effective at attracting and holding water molecules from the surrounding atmosphere.5 This property means that even in environments not perceived as overtly damp, the salt residue will pull moisture from the air and create a thin, invisible film of highly concentrated salt water on the steel surfaces of the barrel, chamber, bolt face, and gas system—anywhere the propellant gases have touched.

This salt water film acts as a powerful electrolyte, dramatically accelerating the electrochemical process of oxidation (rusting). Steel is primarily iron (Fe), and in the presence of an electrolyte and oxygen, the iron atoms readily give up electrons, forming iron oxides. The salt solution does not participate in the final rust product, but its ions make the water far more electrically conductive, speeding up the electron transfer and thus the rate of corrosion by orders of magnitude. The result is rapid and severe pitting and rusting, which can begin to form in a matter of hours in humid conditions and can permanently damage a firearm’s bore and critical components if left unattended.12 This was the trade-off: in exchange for long-term stability and reliable ignition, militaries accepted the burden of dealing with this aggressive, salt-based residue.

Section 2: The Strategic Imperative: Why the Soviets Chose and Retained Corrosive Primers

The Soviet Union’s adherence to corrosive-primed ammunition, long after Western powers had transitioned away from it, is often cited by casual observers as evidence of a lagging technological base. This interpretation is fundamentally flawed. The Soviet choice was not a sign of backwardness but a deliberate and deeply logical decision rooted in the unique pillars of their military doctrine, geography, industrial philosophy, and the hard-won lessons of 20th-century warfare. It was a calculated risk, deemed not only acceptable but optimal for the specific challenges the Soviet military expected to face.

2.1 The Doctrine of Mass and Longevity: “Store and Forget”

At the heart of Soviet military planning was the concept of a massive, continent-spanning war against NATO. This doctrine required the prepositioning of colossal quantities of war materiel, especially ammunition, sufficient to sustain high-intensity combat for a prolonged period.17 The Soviet logistical model was not based on a “just-in-time” supply chain but on a “store and forget” principle. Ammunition was produced in vast numbers, hermetically sealed in iconic tin “spam cans,” and stored in depots stretching from Eastern Europe to the Pacific. These stockpiles were expected to remain viable for decades, ready for immediate issue in a crisis.17

For this grand strategy to work, the absolute, unquestionable reliability of the ammunition after decades in storage was paramount. Here, the chemical properties of the primers were the deciding factor. Corrosive primers, based on the chemically stable salt potassium chlorate, offered unparalleled long-term stability.12 In contrast, the early non-corrosive primer formulations developed in the West were known to be less stable. They were prone to chemical degradation over long storage periods, which could lead to a loss of sensitivity and result in the very misfires and hang-fires that chlorate primers were designed to prevent.5 The U.S. military itself experienced these failures with early non-corrosive lots, which failed to meet stringent storage requirements, validating the Soviet concern and delaying their own full transition.5 For the Soviets, the theoretical risk of a conscript failing to clean his rifle was far more acceptable than the strategic risk of entire ammunition dumps becoming unreliable over time.

2.2 Reliability in Extremis: The “General Winter” Factor

Soviet military doctrine was forged in the crucible of the Eastern Front of World War II, where “General Winter” was as formidable an adversary as any army. The vast expanses of the Soviet Union and its potential European battlefields are subject to extreme cold, with temperatures regularly dropping to levels where the performance of mechanical and chemical systems can be severely degraded.

A critical and often overlooked advantage of chlorate-based corrosive primers was their superior performance in these frigid conditions.12 The ignition of smokeless powder charges becomes significantly more difficult as temperatures plummet. Corrosive primer compositions were known to produce a hotter, more energetic, and more voluminous ignition flash compared to their early non-corrosive counterparts.4 This ensured positive and consistent ignition of the main propellant charge, even in the depths of a Russian winter. This was not a minor benefit; it was a mission-critical operational requirement for an army that expected to fight and win in any weather. The potential for sluggish or failed ignition from non-corrosive primers in sub-zero temperatures was a risk the Red Army was unwilling to take.19 The reliability of the soldier’s rifle in the most extreme cold was a non-negotiable priority that directly favored the proven performance of corrosive primers.

2.3 The Economics of Scale and Simplicity

The Soviet military was an enterprise of unprecedented scale, comprising a massive standing army and the forces of the entire Warsaw Pact. Arming this colossal force required the production of ammunition on a scale of billions of rounds per year. This reality placed a premium on cost-effectiveness and manufacturing simplicity.17

Corrosive primer compounds based on potassium chlorate were chemically simpler and therefore cheaper and easier to manufacture in bulk than the more complex non-corrosive formulas available at the time.21 The Soviets utilized the Berdan priming system, where the anvil is part of the cartridge case itself, which is highly efficient for mass production but difficult for individuals to reload.1 This choice was perfectly aligned with a military doctrine that did not envision reloading by individual soldiers.

This philosophy of prioritizing proven, economical, large-scale production was evident in other aspects of their ammunition design. The decision to standardize on steel-cased cartridges for rounds like the 7.62x39mm was driven by the lower cost of steel compared to brass and the ability to repurpose some of the industrial machinery already producing the 7.62x25mm Tokarev cartridge.22 This industrial inertia and focus on cost-effective mass production naturally extended to the primer, the heart of the cartridge. Changing the primer formulation would have required significant retooling and investment for a perceived benefit (reduced maintenance) that was seen as secondary to the primary requirements of cost, storage life, and all-weather reliability.

2.4 A Divergent Path: A Comparative Timeline of Primer Transition

The Soviet decision-making process is thrown into sharp relief when compared to the timelines of other major military powers. Each nation’s path was dictated by its own unique set of priorities, experiences, and industrial capabilities, demonstrating that the Soviet choice was not an anomaly but one of several rational, albeit different, solutions to the same technological challenge.

CountryKey Transition PeriodRepresentative Corrosive AmmoRepresentative Early Non-Corrosive AmmoStrategic Rationale & Notes
Soviet Union / Russia~1990s – Present7.62x54R, 7.62x39mm (M43), 5.45x39mm (7N6)5.45x39mm (7N10, 7N22, 7N24), Modern Commercial ExportsPriority: Extreme long-term storage stability and cold-weather performance. Transition driven by post-Cold War modernization, not replacement of existing stockpiles.17
United States1950 – 1956WWII-era.30-06 Springfield,.45 ACP.30 Carbine (from inception, WWII), Post-1952/54.30-06 &.45 ACP, 7.62mm NATOPriority: Reduce field maintenance burden. Transition was delayed until non-corrosive primer stability could meet military storage requirements.5
GermanyMixed use, WWI–WWIISome WWI/WWII era 7.92x57mm MauserMany WWI/WWII era 7.92x57mm MauserPriority: Early technological innovation. Patented a non-corrosive formula in 1928. Early versions suffered from short shelf life, leading to mixed use during wartime.6
United Kingdom~Early 1960s.303 British (Cordite loads).303 British MkVIIZ (NC loads), 7.62mm NATOPriority: Gradual transition aligned with shift from Cordite to Nitrocellulose propellants. Evidence suggests a later transition than the US.26

This comparative analysis reveals that there was no single “correct” time to transition. The United States, with its global logistics chain and less extreme climate concerns, prioritized reducing the maintenance burden on its soldiers once the technology was mature enough.5 Germany was a clear technological pioneer but faced early reliability challenges that forced a pragmatic, mixed approach.6 The Soviet Union, facing the unique demands of its geography and grand strategy, made a perfectly rational decision to prioritize absolute reliability and shelf-life over maintenance convenience, retaining a proven technology that perfectly suited its needs.

Section 3: A System of Mitigation: People, Processes, and Technology

The Soviet leadership and ordnance corps were not naive about the risks posed by their ammunition. They understood the chemistry of chlorate primers and the destructive potential of the resulting salt residue. Their decision to retain this ammunition was viable only because they simultaneously engineered and implemented a comprehensive, multi-layered system of mitigation. This system treated the firearm, the soldier, the cleaning tools, and the chemical solvents as a single, integrated whole, designed to systematically manage and neutralize the risk of corrosion. The corrosive primer was never intended to be used in a vacuum; it was one component of a complete and robust risk-management strategy.

3.1 The Soldier and the Manual (The Human Factor & Processes)

The first line of defense in the Soviet system was the soldier himself, forged by rigid discipline and unwavering doctrine. The official Soviet military manuals, known as the Наставление по стрелковому делу (Manual on Small Arms), were unequivocal. Weapon cleaning was not a suggestion to be followed when convenient; it was a mandatory, immediate-action drill.27

According to doctrine, a soldier’s rifle was to be cleaned immediately after any firing session. In a combat environment, this meant cleaning during any lull in the fighting.20 Even if a weapon was not fired, it was to be cleaned at least once a week.27 This relentless discipline was instilled in every conscript as a fundamental tenet of military life, on par with marksmanship itself. A clean, functional weapon was a prerequisite for survival, and the manuals provided a clear, step-by-step process: disassemble the weapon, thoroughly clean all parts exposed to propellant gases (barrel, chamber, gas piston, gas tube, bolt), lubricate, and reassemble.27

The Soviet manuals also contained instructions that demonstrated a sophisticated understanding of the corrosion process, details often overlooked in Western analyses. One such instruction concerned bringing a weapon from a cold environment into a warm one. The manual specified that the weapon should be allowed to “sweat”—that is, to have condensation form on its cold metal surfaces—and then be cleaned before this condensation could evaporate.29 This procedure cleverly used the ambient moisture to begin the process of dissolving the hygroscopic salts, making them easier to remove.

Furthermore, some procedures described leaving the barrel “under alkali” for a period of two to four hours.29 This was intended to allow time for the occluded gases and salt residues trapped within the microscopic pores of the steel to leach out and be neutralized by the cleaning solution. This goes far beyond a simple surface wipe, indicating a deep appreciation for the pervasive nature of the corrosive salts and the need for a thorough chemical neutralization process.

3.2 The Solution in the Bottle (Chemical Technology)

The second layer of the mitigation system was chemical. Soviet soldiers were not merely issued “soap and water.” They were provided with a specifically formulated alkaline cleaning solution known as РЧС (RCHS), an acronym for Раствор для чистки стволов (Solution for Cleaning Barrels).27 This was a purpose-built chemical countermeasure.

The official composition of RCHS, to be mixed fresh for use within a 24-hour period, was 30:

  • Water (Вода): 1 liter. The universal solvent, essential for dissolving the primary corrosive agent, potassium chloride (KCl).
  • Ammonium Carbonate (Углекислый аммоний): 200 grams. This compound forms a weak alkaline solution that effectively neutralizes any acidic residues left by the combustion of the smokeless powder.
  • Potassium Dichromate (Двухромовокислый калий / хромпик): 3-5 grams. This is the most sophisticated component. Potassium dichromate is a powerful oxidizing agent that acts as a corrosion inhibitor. It works by passivating the surface of the steel, forming a microscopic, non-reactive oxide layer that provides temporary protection against rust after the salts have been washed away and before the final layer of oil is applied.

The RCHS solution was a far more advanced formulation than the simple water-based cleaners often assumed. It addressed the problem from multiple angles: dissolving the salt, neutralizing acidic powder fouling, and chemically protecting the bare steel. This debunks the common Western shooter’s myth that Windex with ammonia is an ideal cleaner for corrosive residue.11 While the water in Windex does the primary work of dissolving the salts, the small amount of ammonia does little to neutralize the stable KCl salt and primarily serves to speed evaporation.8 The Soviet RCHS was a true, multi-component chemical weapon cleaning solvent.

In the field, when RCHS was unavailable, soldiers were trained to use effective expedients. The most common and effective was hot water, which dissolves salts more quickly than cold water and evaporates faster, minimizing the time the metal is wet.8 In its absence, soapy water, solutions of wood ash (which is alkaline), or even saliva were understood to provide a weak alkaline wash that could help neutralize acidic residue and begin dissolving salts.35

3.3 The Tool for the Job (Mechanical Technology)

The third layer of the system was the provision of standardized, purpose-built tools. Every Soviet infantryman was issued a compact cleaning kit, known colloquially as the Пенал (“Pencil Case”), which was ingeniously stored in a compartment within the rifle’s buttstock.36 This ensured that the means to perform the mandatory cleaning ritual were always with the soldier and the weapon.

The standard kit for rifles like the AKM and AK-74 was a model of utilitarian design, containing all the essential tools 37:

  • Container/Handle: The cylindrical metal case itself featured holes and slots, allowing it to be used as a T-handle for the cleaning rod, providing better leverage.
  • Sectional Cleaning Rod: A multi-piece steel rod that was typically clipped onto the rifle’s barrel, ready for assembly and use.
  • Jag/Wiper (Протирка): A slotted tip that screwed onto the end of the rod, designed to securely hold a patch of cleaning cloth (ветошь) or a wad of tow (пакля).
  • Bore Brush (Ершик): A nylon bristle brush to scrub fouling from the bore and chamber.
  • Combination Tool: A brilliant piece of multi-purpose engineering, this flat tool served as a screwdriver, a wrench for the gas system, and a key for adjusting the elevation of the front sight post.
  • Punch (Выколотка): A simple pin punch used to drift out the various pins required for detailed disassembly of the rifle.

Complementing the Пенал was the iconic two-chambered metal oiler, the Масленка.38 This bottle was not a design quirk; it was a physical manifestation of the two-step cleaning doctrine. One compartment was filled with the alkaline RCHS solution for cleaning and neutralization, while the other held a neutral gun oil or grease for lubrication and final preservation.39 The soldier had everything required: the tools to disassemble, the chemicals to clean and neutralize, and the lubricant to protect.

3.4 The Armor Within (Firearms Technology)

The final, and arguably most critical, layer of the Soviet mitigation strategy was technological and built directly into the firearms themselves: hard chrome plating. From the World War II-era PPSh-41 submachine gun and well into the modern era, the vast majority of Soviet-designed military small arms—including the SKS carbine, the entire Kalashnikov family of rifles (AK-47, AKM, AK-74), the RPD and PK machine guns, and the SVD designated marksman rifle—featured barrels and gas system components that were hard chrome lined.41

This was not a cosmetic feature or a mere convenience. It was an essential engineering decision that made the long-term use of corrosive ammunition feasible. The process involves electrolytic deposition, where the barrel is placed in a galvanic bath and a thin, uniform layer of hard chromium is plated onto the interior surfaces of the bore, chamber, and often the gas piston.45

This layer of hard chrome acts as a suit of armor for the vulnerable steel underneath. Chromium is significantly harder, slicker, and more corrosion-resistant than the carbon steel of the barrel.44 It is also far less porous.45 This provides two crucial protective functions. First, it creates a robust physical barrier, preventing the hygroscopic salt particles and acidic propellant gases from making direct contact with the steel and initiating the electrochemical process of rust.45 Second, the extremely smooth, non-porous surface of the chrome makes cleaning far more effective and efficient. Fouling and salt residue have less to adhere to and are more easily swabbed out, ensuring that the mandatory cleaning process is successful.44

While it is true that the process of applying a plated layer can, in theory, slightly degrade the maximum potential accuracy of a high-precision match-grade barrel, this is an irrelevant concern for a standard-issue military service rifle.46 The immense gains in barrel life, resistance to erosion, and, most importantly, protection from corrosive ammunition far outweighed any marginal loss in theoretical precision. The chrome lining was the ultimate technological safeguard, the passive defense that underpinned the entire system and allowed the Soviet Union to confidently field a reliable weapons system based on corrosive-primed ammunition.

Section 4: The Legacy and the Modern Transition

The Soviet doctrine of producing and stockpiling vast quantities of corrosive-primed ammunition had profound and lasting consequences that extended far beyond the Cold War. The collapse of the Soviet Union created a legacy in the form of a global surplus market, while the evolution of the Russian military in the post-Soviet era has driven a fundamental shift away from the very doctrine that made corrosive ammunition the logical choice for so long.

4.1 The Enduring Stockpile: A Flood of Surplus

The dissolution of the Warsaw Pact and the subsequent downsizing of former Soviet bloc armies in the 1990s unleashed a torrent of military surplus onto the international civilian firearms market. Central to this flood were the hundreds of millions, if not billions, of rounds of corrosive ammunition that had been sealed in their airtight “spam cans” and stored for decades in preparation for a war that never came.5

This surplus ammunition became immensely popular with civilian shooters in the West, particularly in the United States, for one primary reason: it was incredibly inexpensive.13 Shooters could purchase cases of 1,000 or more rounds for a fraction of the cost of newly manufactured commercial ammunition. This surplus is most commonly found in classic Soviet-era calibers, including 7.62x54R for the Mosin-Nagant rifle, 7.62x39mm (from sources like Yugoslavia, China, and Russia), and 5.45x39mm (primarily the Russian 7N6 variant).5

The availability of this cheap ammunition fueled the popularity of the corresponding surplus rifles, like the SKS and AK variants. However, it also created a new imperative for civilian owners: they had to learn and diligently apply the same cleaning regimen that was drilled into every Soviet conscript. Failure to do so would result in the rapid and destructive rusting of their firearms.10 This has led to the creation of a vast body of community knowledge—and misinformation—about proper cleaning techniques. While methods using hot water, water-based solvents, or oil-water emulsions like Ballistol are effective at dissolving the salts, myths such as using Windex to “neutralize” the corrosive residue persist, a testament to the enduring legacy of this ammunition in the civilian world.8

4.2 The Shift to Non-Corrosive in Modern Russia

The modern Russian Federation’s military is a different entity from its Soviet predecessor. The strategic emphasis has shifted from maintaining a massive, conscript-based force for a continental war to fielding a more professional, modern, and rapidly deployable army. This doctrinal shift has been accompanied by a corresponding evolution in ammunition technology.17

While Russia undoubtedly still possesses vast stockpiles of older corrosive ammunition, evidence strongly indicates that newly developed and manufactured military cartridges are non-corrosive. This transition appears to have begun in the early 1990s with the development of enhanced 5.45x39mm rounds. The 7N10 “Improved Penetration” variant, developed around 1991-1992, and subsequent armor-piercing versions like the 7N22 (“BP”) and 7N24 (“BS”) are widely understood to use modern, non-corrosive Berdan primers.17

The drivers for this change are multifaceted. First, primer chemistry has advanced significantly. Modern non-corrosive primer compounds can now meet or exceed the stringent military requirements for long-term storage stability and all-weather performance that previously gave corrosive primers the edge.17 Second, for a more professional military force, reducing the maintenance burden and the risk of equipment damage from neglect becomes a higher priority. Finally, the reduced need to supply the entire Warsaw Pact alliance has lessened the extreme cost pressures that favored the older, cheaper technology.17

This capability is further proven by the Russian commercial ammunition industry. Major manufacturers like the Tula Cartridge Works, Barnaul Cartridge Plant (brand names like Bear and Monarch), and Vympel (brand name Red Army Standard) have for years produced steel-cased, Berdan-primed ammunition for the lucrative Western export market that is explicitly and reliably non-corrosive.17 This confirms that the technology and manufacturing capability have long been in place; its application to military production was simply awaiting a shift in doctrinal priorities. The transition away from corrosive primers in new-production Russian military ammunition is not merely a technological update; it is a direct reflection of a fundamental evolution in Russia’s military strategy and posture in the post-Cold War world.

Section 5: Conclusion: A System, Not a Flaw

The enduring image of Soviet-era ammunition in the West has often been one of “cheap, dirty, and corrosive,” a stereotype that implies a technological and qualitative inferiority. This analysis, drawing upon technical specifications, historical context, and an understanding of Soviet military doctrine, demonstrates that this perception is a fundamental misinterpretation. The Soviet Union’s decades-long reliance on corrosive-primed ammunition was not a technological deficiency, an economic necessity born of desperation, or a careless oversight. It was a deliberate, pragmatic, and highly successful engineering choice that was part of a holistic and intelligently designed system.

The core thesis of this report is that the corrosive primer was merely one component in a fully integrated, multi-layered risk mitigation strategy. Its selection was viable only because of the simultaneous and mandatory implementation of the other elements of the system.

  1. Passive Defense (Technology): The near-universal application of hard chrome lining in the bores, chambers, and gas systems of their small arms provided a robust, permanent barrier against corrosive attack.
  2. Active Defense (Chemistry): The standard-issue RCHS alkaline cleaning solution was a chemically sophisticated countermeasure, specifically formulated to dissolve the harmful salt residue, neutralize acidic fouling, and passivate the steel surface.
  3. Human Factor (Discipline): The rigid, uncompromising training of the Soviet soldier ensured that the correct cleaning procedures were applied immediately and thoroughly, providing the final, crucial layer of defense.

To analyze the primer in isolation from the chrome-lined barrel, the specialized cleaning solution, and the soldier’s doctrinal manual is to miss the point entirely. The Soviets did not simply accept corrosion; they actively managed it through a defense-in-depth approach. They made a calculated trade-off, prioritizing the absolute certainty of ammunition performance after decades of storage and in the most extreme climates over the convenience of reduced field maintenance. For their specific strategic context—preparing for a massive, prolonged, all-weather war across the Eurasian landmass—this was not just a logical choice, but arguably the optimal one.

The legacy of this decision is still felt today in the millions of rounds of surplus ammunition enjoyed by civilian shooters, who must replicate a portion of the Soviet cleaning doctrine to protect their firearms. The modern Russian military’s transition to non-corrosive ammunition for its newer cartridges does not invalidate the old system; rather, it reflects a shift in that same strategic context. By leveraging both English and Russian-language technical and historical sources, this report has aimed to replace the myth of “commie ammo” with an evidence-based appreciation for a pragmatic and effective engineering and logistical solution. The Soviet system worked as intended for over half a century, arming one of the largest military forces in history and proving that, within its intended context, it was a system, not a flaw.


If you find this post useful, please share the link on Facebook, with your friends, etc. Your support is much appreciated and if you have any feedback, please email me at in**@*********ps.com. Please note that for links to other websites, we are only paid if there is an affiliate program such as Avantlink, Impact, Amazon and eBay and only if you purchase something.


Works cited

  1. Berdan vs Boxer Primer: A History of the Modern Primer -, accessed July 29, 2025, https://gunmagwarehouse.com/blog/berdan-vs-boxer-primer-a-history-of-the-modern-primer/
  2. Origin of A Primer Ballistic | PDF | Technology & Engineering – Scribd, accessed July 29, 2025, https://www.scribd.com/document/322943425/Origin-of-a-primer-Ballistic-docx
  3. A Bit Of History On Primers – Tactical Ordnance – TACTICOR LLC, accessed July 29, 2025, https://tacticor.com/blog/a-bit-of-history-on-primers/
  4. Primers – A Quick Study – Top Brass Reloading Supplies, accessed July 29, 2025, https://www.topbrass-inc.com/blogs/news/primers-a-quick-study
  5. Corrosive Ammunition: Don’t Ruin a Good Gun – The Shooter’s Log, accessed July 29, 2025, https://blog.cheaperthandirt.com/corrosive-ammunition-dont-ruin-good-gun/
  6. Corrosive Ammo – Milsurps, accessed July 29, 2025, https://www.milsurps.com/showthread.php?t=54129
  7. Corrosive Mil-surplus ammo and Mercury – Milsurps, accessed July 29, 2025, https://www.milsurps.com/showthread.php?t=45477
  8. Corrosive Ammunition Guide (Learn About Pros and Cons), accessed July 29, 2025, https://ammo.com/primer-type/corrosive-ammo
  9. Corrosive Ammo Explained – Calibre Magazine, accessed July 29, 2025, https://calibremag.ca/corrosive-ammunition-what-it-is-how-to-spot-it-how-to-clean-it-and-what-to-expect-if-you-dont/
  10. What Are Corrosive Ammo Primers? – SSP Firearms, accessed July 29, 2025, https://www.sspfirearms.com/2023/12/08/what-are-corrosive-ammo-primers/
  11. Shooting Corrosive Ammo? Learn How to Protect Your Guns – Accurate Shooter Bulletin, accessed July 29, 2025, https://bulletin.accurateshooter.com/2024/10/shooting-corrosive-ammo-learn-how-to-protect-your-guns/
  12. How or where can I tell if a certain ammunition is corrosive? – Quora, accessed July 29, 2025, https://www.quora.com/How-or-where-can-I-tell-if-a-certain-ammunition-is-corrosive
  13. How to Clean Corrosive Ammo – Pew Pew Tactical, accessed July 29, 2025, https://www.pewpewtactical.com/clean-corrosive-ammunition/
  14. Tech Tip: Corrosive Ammo – YouTube, accessed July 29, 2025, https://www.youtube.com/watch?v=uqwdtBVFs-o
  15. All About Corrosive Ammunition – The Shooter’s Log, accessed July 29, 2025, https://blog.cheaperthandirt.com/corrosive-ammunition/
  16. Corrosive ammo : r/SKS – Reddit, accessed July 29, 2025, https://www.reddit.com/r/SKS/comments/18opnzx/corrosive_ammo/
  17. Russian military still using newly made corrosive ammo? – Reddit, accessed July 29, 2025, https://www.reddit.com/r/ammo/comments/8i2erm/russian_military_still_using_newly_made_corrosive/
  18. When did they stop making corrosive ammo? – Quora, accessed July 29, 2025, https://www.quora.com/When-did-they-stop-making-corrosive-ammo
  19. What was the purpose of making corrosive ammo? : r/guns – Reddit, accessed July 29, 2025, https://www.reddit.com/r/guns/comments/2kn23u/what_was_the_purpose_of_making_corrosive_ammo/
  20. Corrosive Ammo: Why? : r/milsurp – Reddit, accessed July 29, 2025, https://www.reddit.com/r/milsurp/comments/u1um73/corrosive_ammo_why/
  21. Corrosive/Non-Corrosive Ammunition | USCCA, accessed July 29, 2025, https://www.usconcealedcarry.com/resources/terminology/decoding%20ammunition%20boxes/corrosive-non-corrosive/
  22. 7.62×39mm – Wikipedia, accessed July 29, 2025, https://en.wikipedia.org/wiki/7.62%C3%9739mm
  23. Why do some gun ranges forbid the use of Russian ammo? – The Gun Club, accessed July 29, 2025, https://thegunclub.quora.com/Why-do-some-gun-ranges-forbid-the-use-of-Russian-ammo
  24. U.S. GI Non-Corrosive Primers, accessed July 29, 2025, http://www.odcmp.org/1101/usgi.pdf
  25. Primer Composition and Gunshot Residue – Office of Justice Programs, accessed July 29, 2025, https://www.ojp.gov/ncjrs/virtual-library/abstracts/primer-composition-and-gunshot-residue
  26. .303 Corrosive/Non-Corrosive Database? – Milsurps, accessed July 29, 2025, https://www.milsurps.com/showthread.php?t=77765
  27. Чистка и смазка автомата, задержки при стрельбе, accessed July 29, 2025, https://bezpekavip.com/chistka-i-smazka-avtomata-zaderzhki-pri-strelbe
  28. Чистка АК-74М. Начальная военная подготовка. – YouTube, accessed July 29, 2025, https://www.youtube.com/watch?v=Cz3_Zmt8mnA
  29. Техническое обслуживание стволов стрелкового оружия Текст научной статьи по специальности «Науки об образовании – КиберЛенинка, accessed July 29, 2025, https://cyberleninka.ru/article/n/tehnicheskoe-obsluzhivanie-stvolov-strelkovogo-oruzhiya
  30. Раствор чистки стволов (РЧС, ТРЧС). Наша компания выпускает ряд средств для чистки оружия. Это средства для.. 2025 | ВКонтакте, accessed July 29, 2025, https://vk.com/wall-72413978_696
  31. Как ухаживать за оружием: правильная чистка Оружие чистят так …, accessed July 29, 2025, https://vk.com/wall-36540424_18244
  32. A Case for Corrosive Ammo | An Official Journal Of The NRA – Shooting Illustrated, accessed July 29, 2025, https://www.shootingillustrated.com/content/a-case-for-corrosive-ammo/
  33. Ammonia & Corrosive Ammo. : r/guns – Reddit, accessed July 29, 2025, https://www.reddit.com/r/guns/comments/2hjg0n/ammonia_corrosive_ammo/
  34. What’s the deal with corrosive primers in ammo, and why do they make immediate cleaning so important? – Quora, accessed July 29, 2025, https://www.quora.com/What-s-the-deal-with-corrosive-primers-in-ammo-and-why-do-they-make-immediate-cleaning-so-important
  35. Правильная чистка оружия – методы, средства, правила – Guns.Club, accessed July 29, 2025, https://guns.club/lib/oruzhie/chistka-ognestrelnogo-oruzhiya/
  36. Чистка карабина Тигр и винтовки СВД с помощью штатной принадлежности, accessed July 29, 2025, https://zastava-izhevsk.ru/3/ispolzovanie-shtatnoy-prinadlezhnosti-dlya-obsluzhivaniya-tigra/
  37. Набор для чистки АК 47, калибр.7.62 в пенале: продажа, цена в …, accessed July 29, 2025, https://sportmarathon.com.ua/p984081101-nabor-dlya-chistki.html
  38. Масленка для ухода за оружием однокамерная (СССР, армейская). – Pnevmat.by, accessed July 29, 2025, https://pnevmat.by/p61019546-maslenka-dlya-uhoda.html
  39. Масленка оружейная купить на OZON по низкой цене, accessed July 29, 2025, https://www.ozon.ru/category/maslenka-oruzheynaya/
  40. Нейтральное и щелочное масло – НПФ АКСИОМА – Средства по уходу за оружием, accessed July 29, 2025, https://npfaxioma.ru/page/neytralnoe_i_schelochnoe_maslo.html
  41. RPD machine gun – Wikipedia, accessed July 29, 2025, https://en.wikipedia.org/wiki/RPD_machine_gun
  42. Soviet Weapons in World War II | RANGER PRAGUE, accessed July 29, 2025, https://www.pragueranger.cz/blog/Soviet-weapons-in-world-war2/
  43. AK-47 – Wikipedia, accessed July 29, 2025, https://en.wikipedia.org/wiki/AK-47
  44. What’s the deal with chrome-lining and chrome-plating? – GunTweaks.com, accessed July 29, 2025, https://www.guntweaks.com/whats-the-deal-with-chrome-lining-and-chrome-plating.html
  45. Хромирование ствола – что это и зачем нужно | библиотека …, accessed July 29, 2025, https://guns.club/lib/oruzhie/khromirovanie-stvola-chto-eto-i-zachem-nuzhno/
  46. CHROME LINED BARRELS – TargetTalk, accessed July 29, 2025, https://www.targettalk.org/viewtopic.php?t=59196
  47. Behind The Shine Of Chrome-Lined Barrels – Gun Digest, accessed July 29, 2025, https://gundigest.com/rifles/chrome-lined-barrels
  48. About Red Army Standard | True Shot Ammo, accessed July 29, 2025, https://trueshotammo.com/academy/about-red-army-standard/
  49. Corrosive Ammo vs. Non-Corrosive Ammo: Understanding the Difference | True Shot Ammo, accessed July 29, 2025, https://trueshotammo.com/academy/corrosive-ammo-vs-non-corrosive-ammo-understanding-the-difference/
  50. RUSSIAN SURPLUS 5.45x39mm 7N6 FMJ STEEL CORE 100rd BAG, accessed July 29, 2025, https://www.308ammo.com/RUSSIAN-SURPLUS-5-45x39mm-7N6-FMJ-STEEL-CORE-p/7n6loose.htm
  51. Corrosive Ammo – YouTube, accessed July 29, 2025, https://www.youtube.com/watch?v=Oo2cFiyobY8
  52. 5.45×39mm – Wikipedia, accessed July 29, 2025, https://en.wikipedia.org/wiki/5.45%C3%9739mm
  53. What is the shell of 7N6M and 7N10 5.45×39 cartridges made of?? : r/guns – Reddit, accessed July 29, 2025, https://www.reddit.com/r/guns/comments/jt5wgi/what_is_the_shell_of_7n6m_and_7n10_545x39/
  54. Decided to do a little digging on all the different types of 7n ammo out there. : r/EscapefromTarkov – Reddit, accessed July 29, 2025, https://www.reddit.com/r/EscapefromTarkov/comments/fd9yzr/decided_to_do_a_little_digging_on_all_the/

Video: SVD Dragunov 7.62×54mmR Sniper Rifle by ArmlistMedia – Great Overview Plus Field Stripping

One of my regrets is that I have not had the funds and opportunity (at the same time) to buy a SVD Dragunov.  For those of you who do not know it, the Dragunov was developed as a designated marksman rifle (DMR) by the USSR and has evolved over the years.  Contrary to what some say, it is not an oversize AK – the Drag’s bolt carrier does not have an attached piston and all the mass associated.  Instead, there is a short stroke piston operating under left & right handguards over the barrel.  You get to see all of that and very straight forward field stripping guidance in this video.

 

I really like this video.  The narration is very straight forward with a touch of humor and the video quality is solid.  Some day, I will own a Drag 🙂


If you find this post useful, please share the link on Facebook, with your friends, etc. Your support is much appreciated and if you have any feedback, please email me at in**@*********ps.com. Please note that for links to other websites, we are only paid if there is an affiliate program such as Avantlink, Impact, Amazon and eBay and only if you purchase something.