An Electromagnetic Pulse (EMP) is a short, intense burst of electromagnetic energy that can disrupt, damage, or destroy electronic systems over a wide area. While EMP phenomena can occur naturally, their potential as a weapon of mass disruption presents one of the most severe and asymmetric threats to the national security of the United States. The nation’s profound and growing dependence on a complex, interconnected web of electronic systems makes it uniquely vulnerable to an attack that targets this very foundation of modern society. Understanding the distinct types of EMP, their physical generation mechanisms, and the specific ways they interact with and destroy electronics is the essential first step in assessing this threat and formulating a credible national response.
Taxonomy of EMP Events
EMP events are broadly categorized by their origin: natural or man-made.1 This fundamental distinction is critical, as it defines the characteristics of the pulse, the scope of its effects, and the nature of the threat itself.
Natural vs. Man-Made
Natural EMP events are primarily the result of severe space weather. A Coronal Mass Ejection (CME) from the sun can send a wave of plasma and charged particles toward Earth, causing a Geomagnetic Disturbance (GMD).2 A historically significant example is the 1859 Carrington Event, which induced currents so powerful they set telegraph offices ablaze.4 While a modern Carrington-class event would pose a catastrophic threat to long-line infrastructure like the electric grid, its effects are primarily low-frequency and do not contain the fast, high-frequency components that directly destroy smaller electronics.5
Man-made EMPs, by contrast, are engineered to maximize destructive potential across a broad frequency spectrum. These intentional attacks are the focus of this report and are divided into two primary categories based on the energy source used to generate the pulse.3
Nuclear vs. Non-Nuclear
The most powerful and wide-ranging EMP threat comes from a nuclear detonation, specifically a high-altitude burst, which generates a Nuclear Electromagnetic Pulse (NEMP).4 A single such event, known as a High-Altitude EMP (HEMP), can blanket the entire continental United States with a complex, multi-component pulse designed for systemic destruction.3
Conversely, Non-Nuclear Electromagnetic Pulse (NNEMP) weapons, often called E-bombs, use conventional energy sources to generate a more localized but still potent EMP.4 These devices offer tactical flexibility and can be deployed without crossing the nuclear threshold, presenting a different but equally serious set of strategic challenges.4
The Physics of a High-Altitude Nuclear Detonation (HEMP)
A HEMP is the most catastrophic EMP threat due to its vast area of effect and its complex, multi-layered waveform. A single nuclear weapon with a yield of 1.4 megatons, detonated at an altitude of 250 miles over the central U.S., would affect the entire continent.9 The 1962 Starfish Prime test, a 1.4-megaton detonation 250 miles over Johnston Island, caused streetlights to fail and burglar alarms to sound in Hawaii, nearly 900 miles away, demonstrating the profound reach of the phenomenon.6
The generation of a HEMP begins in the first nanoseconds after a nuclear detonation above an altitude of 30 km.10 The explosion releases an intense, instantaneous burst of gamma rays. These high-energy photons travel outward and collide with air molecules in the upper atmosphere. Through a process known as the Compton Effect, the gamma rays strip electrons from these molecules, creating a massive cascade of high-energy “Compton electrons”.9 These electrons, traveling at relativistic speeds, are captured by the Earth’s magnetic field and forced into a spiral trajectory, creating a massive, coherent, time-varying electrical current. This current radiates a powerful electromagnetic pulse that propagates down to the Earth’s surface.12
The resulting HEMP waveform is not a single pulse but a sequence of three distinct components, designated E1, E2, and E3. These components arrive in rapid succession, each with unique characteristics tailored to attack different parts of the technological infrastructure. This is not a random side effect but a synergistic weapon system, where each component’s attack enables and amplifies the damage of the next.
The E1 Pulse (Early-Time)
The E1 component is the first, fastest, and most direct threat to modern microelectronics. It is an extremely intense electric field, reaching peaks of 50,000 volts per meter (50 kV/m), with an incredibly rapid rise time measured in mere nanoseconds.12 Its duration is brief, lasting only a few microseconds.14 The E1 pulse’s energy is spread across a very broad frequency spectrum, from direct current (DC) up to 1 GHz, which allows it to efficiently couple with small-scale conductors like the wiring in buildings, the traces on printed circuit boards, and the internal architecture of microchips.11 This component acts as the “key” that unlocks the system’s defenses. Its speed is its greatest weapon; it rises too quickly for conventional surge protectors, which typically react in milliseconds, to provide any meaningful protection.11 By inducing voltages that far exceed the breakdown threshold of delicate semiconductor junctions, E1 is capable of destroying the “brains” of modern society: computers, communication systems, industrial control systems, and sensors.9
The E2 Pulse (Intermediate-Time)
Following the E1 pulse, from about one microsecond to one second after the detonation, is the E2 component.11 Generated by scattered gamma rays and inelastic gammas from neutrons, the E2 pulse has characteristics very similar to the electromagnetic pulse produced by a nearby lightning strike.11 On its own, the E2 pulse would be a manageable threat, as much of the nation’s infrastructure has some level of lightning protection.13 However, its danger is synergistic and opportunistic. The E2 pulse acts as the “crowbar” that exploits the now-undefended system. The E1 pulse may have already damaged or destroyed the very surge protection devices and filters designed to stop a lightning-like transient. The U.S. EMP Commission concluded that this synergistic effect is the most significant risk of E2, as it allows the energy of the second component to penetrate deeply into systems whose defenses have been compromised moments before.11
The E3 Pulse (Late-Time)
The final and longest-lasting component is the E3 pulse, which begins seconds after the detonation and can persist for minutes or even longer.11 This slow, low-frequency pulse is not generated by the Compton Effect but by the large-scale distortion of the Earth’s magnetic field. The expanding nuclear fireball, a massive bubble of hot, ionized gas, effectively shoves the planet’s magnetic field lines aside. As the field slowly snaps back into place, this magnetohydrodynamic (MHD) effect induces powerful, low-frequency currents in the Earth itself.15 The E3 pulse’s characteristics are very similar to a severe GMD from a solar storm.11
This component is the “demolition charge” that targets the “muscle” of the nation’s infrastructure: the electric power grid. The slow-changing fields of E3 are perfectly suited to induce geomagnetically induced currents (GICs)—powerful, quasi-DC currents—in very long electrical conductors, such as high-voltage transmission lines, pipelines, and railway lines.14 AC power systems, particularly the massive extra-high-voltage (EHV) transformers that form the backbone of the grid, are not designed to handle these DC-like currents. The GICs cause the magnetic cores of these transformers to saturate, leading to extreme harmonic distortion, rapid overheating, and catastrophic physical destruction within minutes.13 The E3 pulse ensures that even if some electronics survive the E1 and E2 pulses, they will be without the electrical power needed to function for a very long time.
The Physics of Electronic Disruption
The destructive power of an EMP stems from its ability to use an electronic system’s own wiring against it. According to Maxwell’s equations, a time-varying magnetic field induces an electric field, and thus a current, in any nearby conductor.1 An EMP is an intense, rapidly changing electromagnetic field; therefore, any conductive material within its range—from a continental power line to a microscopic wire in a CPU—acts as an antenna, collecting the pulse’s energy and converting it into damaging electrical currents and voltages.18
Coupling and Induced Currents
The efficiency of this energy transfer, or “coupling,” depends on the relationship between the wavelength of the EMP’s energy and the length of the conductor. The high-frequency E1 pulse couples best with shorter conductors (a few inches to several feet), which is why it is so damaging to personal electronics and the internal components of larger systems.15 The low-frequency E3 pulse couples most efficiently with very long conductors (many miles), making the nation’s vast network of power lines the primary collector for its destructive energy.15 Once coupled, these induced currents can reach thousands of amperes, and voltages can reach hundreds of kilovolts, overwhelming circuits designed to operate on a few volts and milliamps.15
Failure Modes
The induced energy surge destroys electronics through two primary mechanisms:
- Dielectric Breakdown: Every electronic component contains insulating materials (dielectrics) designed to prevent current from flowing where it should not, such as the thin silicon dioxide layer that insulates the gate of a transistor. When the voltage induced by an EMP exceeds the dielectric strength of this material, the insulator permanently breaks down, creating a short circuit. This process effectively “fries” the microchip, turning a complex transistor into a useless carbon resistor.18
- Thermal Damage: The flow of an immense current through a tiny conductor, per Joule’s law (P=I2R), generates an incredible amount of heat in a fraction of a second. This intense local heating can melt or vaporize the delicate internal wiring of an integrated circuit, fuse transistor junctions together, or burn out components on a circuit board.9
Vulnerability of Modern Electronics
The relentless drive for smaller, faster, and more energy-efficient electronics has inadvertently made modern society exponentially more vulnerable to EMP. Solid-state microelectronics operate at very low voltages and have microscopic feature sizes, which dramatically reduces their tolerance to voltage spikes compared to older, more robust technologies like vacuum tubes.20 The very complexity and miniaturization that enable our technological prowess have become a critical vulnerability.
Non-Nuclear EMP (NNEMP) Weapons
While HEMP represents the most catastrophic threat, the development of effective NNEMP weapons has created a new class of tactical threats. These devices allow an adversary to achieve localized, debilitating electronic effects without resorting to nuclear weapons, thus occupying a dangerous strategic “gray zone”.4 An attack using an NNEMP weapon could paralyze a city’s financial district or disable an air defense network without causing direct loss of life, potentially creating confusion and plausible deniability that might delay or prevent a kinetic military response.22
Technology Overview
NNEMP weapons use conventional energy sources to generate a powerful, localized pulse. The two primary technologies are:
- Flux Compression Generators (FCGs): An FCG uses a bank of capacitors to send a strong initial current through a coil of wire (the stator), creating an intense magnetic field. A cylinder filled with high explosives (the armature) is placed inside the coil. When the explosive is detonated, the rapidly expanding armature creates a moving short circuit with the stator, compressing the magnetic field into an ever-smaller volume. This rapid compression converts the chemical energy of the explosive into a single, massive electromagnetic pulse.23
- High-Power Microwave (HPM) Weapons: These devices function like highly advanced, weaponized microwave ovens. They use technologies like virtual cathode oscillators (vircators) or magnetrons to generate an extremely powerful, focused beam of microwave energy.23 This directed energy can be aimed at a specific target to disrupt or destroy its internal electronics. The U.S. Air Force has successfully tested HPM weapons delivered by cruise missiles, such as the Counter-electronics High Power Microwave Advanced Missile Project (CHAMP) and its successor, the High-Powered Joint Electromagnetic Non-Kinetic Strike Weapon (HiJENKS).23
Tactical Applications
NNEMP weapons can be delivered by a variety of platforms, including cruise missiles, drones, or even ground vehicles like a van.4 Their effects are geographically constrained, ranging from a single building to several square miles, depending on the size of the weapon and its altitude.9 This makes them ideal for surgical, non-lethal (to humans) first strikes against high-value military or civilian targets. An NNEMP could be used to disable enemy command and control centers, blind air defense radars to clear a path for conventional bombers, or cripple a nation’s stock exchange to trigger economic chaos.22
Table 1: Comparison of EMP Threat Characteristics
| Threat Type | HEMP (E1) | HEMP (E3) | NNEMP (HPM/FCG) | Geomagnetic Disturbance (GMD) |
| Generation Source | High-Altitude Nuclear Detonation | High-Altitude Nuclear Detonation | Conventional Explosive / Microwave Generator | Solar Coronal Mass Ejection |
| Rise Time | Nanoseconds (10−9 s) | Seconds to Minutes | Nanoseconds to Microseconds | Hours to Days |
| Duration | Microseconds (10−6 s) | Minutes to Hours | Microseconds to Milliseconds | Days |
| Peak Field Strength | Very High (~50 kV/m) | Very Low (~0.01−0.1 V/m) | High (Localized) | Extremely Low |
| Frequency Spectrum | Broadband (DC – 1 GHz) | Very Low Frequency (<1 Hz) | Narrowband (Microwave) or Broadband | Quasi-DC |
| Primary Coupling | Short Conductors (Circuit Boards, Wires) | Long Conductors (Power Lines, Pipelines) | Direct Illumination, Short Conductors | Long Conductors (Power Lines) |
| Primary Infrastructure Target | Microelectronics (Computers, SCADA, Comms) | EHV Transformers, Power Grid | Targeted Electronics (e.g., Radars, Data Centers) | EHV Transformers, Power Grid |
Vulnerability Assessment of U.S. Critical National Infrastructure
The United States’ civilian infrastructure is profoundly and uniquely vulnerable to an EMP attack. The Congressional EMP Commission, after years of study, concluded that the protections common during the Cold War are now “almost completely absent” in the civilian sector.25 This vulnerability is not isolated to a single area but is systemic, rooted in the interconnected nature of the 16 critical infrastructure sectors defined by the Department of Homeland Security. The failure of one foundational infrastructure—the electric power grid—would trigger a rapid, cascading collapse across all others, leading to a national catastrophe.3
The Electric Power Grid: The Linchpin of Modern Society
The electric power grid is the single most critical infrastructure in the United States. Its collapse is the primary catastrophic outcome of a widespread EMP event because all other infrastructures—telecommunications, finance, water, food, transportation, and healthcare—are entirely dependent upon it.6 A society of nearly 330 million people is not structured to provide for its basic needs without electricity.26 While other infrastructures might suffer direct damage from an EMP, only the power grid faces the prospect of a nearly complete, long-term collapse from which recovery could take years.26
EHV Transformers: The Achilles’ Heel
The most acute vulnerability in the entire U.S. infrastructure lies within the nation’s fleet of extra-high-voltage (EHV) transformers.28 These massive, house-sized devices are the backbone of the bulk power transmission system. They are also uniquely susceptible to the low-frequency E3 component of a HEMP or a severe GMD.27 The quasi-DC currents induced by these events cause the transformers’ magnetic cores to saturate, leading to extreme internal heating that can physically melt windings and destroy the unit in as little as 90 seconds, as was observed in the 1989 Quebec blackout.17
This physical vulnerability is compounded by a catastrophic logistical problem. EHV transformers are not mass-produced, off-the-shelf items. They are custom-built, weigh hundreds of tons, and have manufacturing and delivery lead times of 12 to 18 months or longer.28 Critically, there are no domestic manufacturers for the largest EHV transformers, meaning they must be sourced from overseas competitors like Germany or South Korea.28 The United States maintains an insufficient stockpile of spares, and a single HEMP event could destroy hundreds of these transformers simultaneously.27 This creates a “Recovery Paradox”: the nation’s ability to recover from a grid collapse depends on manufacturing and transporting replacements, an industrial and logistical feat that is itself impossible without a functioning power grid and global supply chain. This feedback loop means that a large-scale loss of EHV transformers would not be a temporary blackout but a potential decade-long societal shutdown. A 2008 study presented to the National Academies estimated a recovery time of 4 to 10 years and a direct economic cost of $1 to $2 trillion for such an event.27
SCADA Systems
Compounding the physical destruction of the grid’s “muscle” is the vulnerability of its “brain.” The Supervisory Control and Data Acquisition (SCADA) systems that utilities use to monitor and control the flow of power are complex networks of computers, sensors, and communication links.6 These systems are composed of modern, solid-state electronics that are highly susceptible to the fast, high-frequency E1 pulse. The destruction of SCADA systems would leave grid operators blind and unable to manage the grid, assess damage, or coordinate restoration efforts, greatly complicating any recovery attempt.6
Telecommunications and Information Networks
The telecommunications infrastructure, the nation’s nervous system, is equally vulnerable, primarily through its dependence on the electric grid. This creates the “Illusion of Resilience,” where many critical facilities believe they are protected by backup power systems. While data centers, central switching offices, and cellular towers are often equipped with diesel generators and battery backups, this resilience is measured in hours or days, not the years that would be required for grid recovery.26 The fuel for these generators is delivered by a supply chain that requires electricity for refineries, pipelines, and transport. This chain would break within days of a grid collapse, rendering the backup systems useless and exposing the true fragility of the communications network.
The Fiber Optic Paradox
It is a common misconception that the widespread use of fiber-optic cables has made telecommunications networks immune to EMP. While the glass fibers themselves are not conductive and are therefore unaffected by electromagnetic fields, the network as a whole is not immune.21 A long-haul fiber-optic cable requires electronically powered repeaters and amplifiers every 40-60 miles to boost the signal. These devices, along with the routers and switches at network nodes, are filled with vulnerable microelectronics and are powered by the electric grid.15 Even armored fiber-optic cables, designed for underground use, often contain metallic strength members or shielding layers that can act as antennas, collecting EMP energy and channeling it into the connected electronic equipment.31 Therefore, while the data-carrying medium is robust, the supporting infrastructure that makes it function is highly fragile.
The Financial Sector
The modern financial system is not merely supported by electronics; it is electronics. All transactions, records, and market operations are digital. An EMP attack would represent an existential threat to the entire banking and finance infrastructure.32 The E1 pulse could cause direct damage to servers, routers, and data storage systems within financial institutions. This could lead to irreparable hardware destruction, system latch-up, and the corruption or erasure of magnetic storage media like backup tapes.32 While major data centers are often housed in physically secure facilities with robust backup power, they are rarely shielded against a direct EMP field and remain dependent on the long-term viability of the power grid and communications networks.26 The immediate paralysis of all electronic payments, ATM withdrawals, and market trading would be catastrophic. Perhaps more damaging in the long term would be the complete loss of public trust in the security and stability of financial institutions, a foundation upon which the entire economy is built.32
Interdependent Infrastructures and Cascading Failures
An EMP attack would not be a series of isolated failures but a single, systemic collapse. The mathematical principles of network theory apply: in a highly interconnected system, the failure of a critical node—the electric grid—will trigger a rapid, cascading failure across all dependent nodes.15
- Transportation: Modern automobiles and trucks contain dozens of vulnerable microprocessors and electronic control units (ECUs) that manage everything from engine ignition and fuel injection to braking and transmission systems.9 A HEMP event would likely render a significant fraction of post-1980s vehicles inoperable, instantly paralyzing road transport.9 The failure of electronic traffic signal systems would create gridlock, and the collapse of the fuel distribution network would halt all remaining vehicles.
- Water and Wastewater: Municipal water systems rely on electric pumps to maintain pressure and distribute water to homes and businesses. Wastewater treatment plants are similarly dependent on electricity for all their processes.2 The failure of these systems would lead to a rapid loss of access to safe drinking water and a complete breakdown of sanitation, creating the perfect conditions for a massive public health crisis and the spread of diseases like cholera and dysentery.35
- Food and Healthcare: The U.S. food supply operates on a “just-in-time” logistics model with minimal reserves. The paralysis of transportation, the loss of refrigeration, and the shutdown of food processing plants would mean that grocery store shelves would be empty within days.36 Simultaneously, hospitals, filled with sophisticated electronic diagnostic and life-support equipment, would be rendered technologically inert. With limited backup power, they would be overwhelmed by the public health crisis and unable to provide anything beyond the most rudimentary care.37
Strategic Attack Scenarios: Analysis and Recovery
To operationalize the preceding vulnerability assessment, this section presents three plausible attack scenarios. These scenarios are designed to illustrate the different scales of the EMP threat, from a civilization-ending catastrophe to a targeted, strategic disruption. Each scenario is analyzed in terms of the weapon system, its likely impacts, the daunting road to recovery, and potential mitigation strategies.
| Table 2: Summary of Strategic Attack Scenarios | |||||
| Scenario | Impact Level | Weapon System | Delivery Method | Target Area | Scale of Infrastructure Impact |
| Scenario A | Catastrophic | Single High-Yield (1.4 MT) “Super-EMP” HEMP | Intercontinental Ballistic Missile (ICBM) | Continental United States (CONUS) | Total, nationwide collapse of all critical infrastructures |
| Scenario B | Regional | Single Low-Yield (10-20 kT) HEMP | Ship-launched Short-Range Ballistic Missile (SRBM) | Major coastal region (e.g., Eastern Seaboard) | Regional grid collapse; national economic shock; refugee crisis |
| Scenario C | Tactical | Swarm of NNEMP (HPM/FCG) cruise missiles | Submarine or aircraft launch | Specific high-value nodes (e.g., Wall Street) | Localized “electronic deserts”; financial market paralysis |
Scenario A (Catastrophic Impact): Coordinated HEMP Attack
This scenario represents the worst-case, existential threat to the United States.
- Weapon & Delivery: A peer adversary, such as Russia or China, launches a single, high-yield (e.g., 1.4 Megaton) thermonuclear warhead specifically designed to maximize gamma ray output—a so-called “Super-EMP” weapon.25 The warhead is delivered via an ICBM and detonated at an optimal altitude of approximately 250 miles (400 km) over the geographic center of the country, such as Kansas.5 This attack vector is well within the known capabilities of several nations, who have reportedly integrated EMP attacks into their military doctrines as a means to defeat a technologically superior U.S. force.25
- Impacts: The line-of-sight effects of the detonation would create an EMP field covering the entire continental United States, as well as parts of Canada and Mexico.9 The impact would be immediate and absolute.
- Direct: The E1 pulse would instantly destroy or disrupt a significant fraction of all unhardened microelectronics nationwide. This includes computers, cell phones, SCADA systems, and the electronic controls in vehicles and aircraft. The E3 pulse would follow, inducing catastrophic GICs in the power grid, leading to the rapid, simultaneous destruction of hundreds of EHV transformers. This would trigger a cascading failure and complete collapse of all three major U.S. power interconnections (Eastern, Western, and ERCOT) within minutes.27
- Cascading: The result would be a total, nationwide, and indefinite blackout. Every interdependent infrastructure described in Section 2.4 would fail systemically. Communications would revert to pre-industrial methods like runners and word-of-mouth, with limited connectivity from the small amateur radio community.35 The transportation network would cease to function. The water, food, and medical systems would collapse. The nation would be plunged into a pre-industrial existence but with a 21st-century population density and a near-total lack of relevant survival skills. The EMP Commission grimly warned that under such conditions, a majority of the U.S. population could perish within a year from starvation, disease, and the complete breakdown of social order.6
- Road to Recovery: Recovery from this scenario would not be a matter of years, but of decades or generations. The primary impediment is the “Recovery Paradox” of the EHV transformers. The industrial capacity to build and transport hundreds of these massive devices would have been destroyed along with the grid itself. Recovery would depend on massive, sustained international aid, which may not be forthcoming given the global economic depression that would follow the collapse of the U.S. economy. The nation would have to be rebuilt from the ground up.
- Mitigation: This catastrophic outcome can only be prevented through a pre-emptive, federally mandated, and funded national effort to harden the electric grid. This includes shielding all critical EHV transformers with technologies like neutral current blockers, deploying multi-stage E1/E2 protection devices on all SCADA and control systems, and establishing a large strategic reserve of spare EHV transformers.17
Scenario B (Likely/Regional Impact): Limited HEMP Attack by a Rogue State
This scenario outlines a more limited but still devastating attack, potentially executed by a rogue state or a state-sponsored terrorist organization.
- Weapon & Delivery: An adversary with basic nuclear and missile capabilities, such as North Korea or a future nuclear-armed Iran, places a lower-yield nuclear weapon (10-20 kilotons) aboard a commercial freighter. Off the U.S. coast, the weapon is launched via a common short-range ballistic missile, like a Scud, and detonated at an altitude of 50-100 miles.5 This method of attack is particularly insidious because it could be executed with a degree of anonymity; a high-altitude burst leaves no bomb debris for forensic analysis, potentially allowing the perpetrator to escape immediate retaliation.5
- Impacts: The effects would be confined to a regional footprint with a radius of several hundred miles, rather than continent-wide. A detonation 200 miles off the coast of Virginia, for example, could blanket the entire Eastern Seaboard from New England to the Carolinas, encompassing the nation’s political and financial capitals.
- Direct: A regional grid collapse would ensue, plunging tens of millions of people into darkness. All unhardened electronics, communications, and transportation systems within the affected zone would fail.
- Cascading: While the rest of the country would remain powered, it would be faced with a national emergency of unprecedented scale. The paralysis of Washington D.C., New York, and other major eastern cities would trigger an immediate and severe national economic crisis. A massive humanitarian crisis would unfold as millions of people trapped in the blackout zone attempt to flee, creating a refugee flow that would overwhelm neighboring states. The unaffected regions of the country would see their resources, from the National Guard to food and fuel supplies, stripped to support the massive relief and recovery effort.
- Road to Recovery: The recovery of the affected region would be a multi-year national priority, likely taking 2-5 years. The EHV transformer bottleneck would still be the primary limiting factor, but the nation could, in theory, divert its entire stock of spares and prioritize new manufacturing for the stricken region. The effort would require a full-scale mobilization of federal resources, including FEMA and the Department of Defense, for security, logistics, and humanitarian aid on a scale never before seen.
- Mitigation: In addition to the grid-hardening measures described in Scenario A, mitigation for this threat requires enhanced maritime and atmospheric surveillance to detect and interdict potential launch platforms before an attack can be executed. Furthermore, developing robust “black start” capabilities—the ability to restart isolated segments of the power grid independently without relying on the wider network—is critical for regional resilience.37
Scenario C (Tactical Impact): Coordinated NNEMP Attack
This scenario demonstrates the strategic use of non-nuclear weapons to achieve precise, debilitating effects without causing widespread destruction or loss of life.
- Weapon & Delivery: A sophisticated adversary launches a coordinated swarm of 5 to 10 advanced cruise missiles equipped with NNEMP warheads (either HPM or FCG).4 The missiles could be launched from a submarine, long-range bomber, or even covert ground platforms, flying low to evade radar detection before striking their targets simultaneously.24
- Targeting: The attack is surgical and not aimed at the general power grid. Instead, it targets a cluster of specific, high-value nodes within a single metropolitan area to achieve a strategic effect. A prime example would be a synchronized attack on the New York Stock Exchange, the NASDAQ data center in New Jersey, and the major clearinghouse banks in the Wall Street financial district. Other potential target sets include the data center clusters of Northern Virginia (the backbone of the internet), the port complex of Los Angeles/Long Beach (a critical national supply chain node), or a key military command and control facility.
Impacts:
- Direct: The attack is non-kinetic and causes no direct fatalities. It does not trigger a widespread blackout. Instead, the targeted facilities are instantly transformed into “electronic deserts.” The intense microwave or radio-frequency pulses would induce currents that cause a “hard kill” on the unshielded electronics within the target buildings, destroying servers, routers, communication hubs, and data storage systems.21 The damage would be permanent, requiring the complete replacement of the affected hardware.21
- Cascading: The immediate effect of an attack on Wall Street would be the complete paralysis of U.S. and global financial markets. The inability to access records, clear transactions, or execute trades would trigger a financial panic and economic crisis far more damaging than the physical cost of the destroyed equipment. The non-lethal, non-kinetic nature of the attack could create initial confusion, potentially being mistaken for a massive technical failure, which would delay a coherent national security response.
- Road to Recovery: The recovery timeline would be measured in weeks to months. The primary challenge would not be grid reconstruction but the procurement and installation of highly specialized electronic equipment. An even greater challenge would be restoring domestic and international trust in the integrity and security of the U.S. financial system. The economic and psychological damage could be immense and long-lasting.
- Mitigation: This highly targeted threat requires facility-level, not grid-level, hardening. Critical national infrastructure nodes—in finance, communications, and logistics—must be physically shielded. This involves constructing facilities that function as Faraday cages, using EMP-rated filters and surge protectors on all incoming power and data lines, and ensuring that all data connections entering or leaving the secure perimeter are fiber-optic to prevent conductive pathways for the pulse.9
U.S. Preparedness: A Tale of Two Efforts
The United States’ preparedness for an EMP attack is a study in contrasts, defined by a dangerous and growing disparity between strategic awareness and civilian vulnerability. Within the national security apparatus, the threat is well understood, and key military and governmental functions are protected. However, the vast civilian infrastructure that underpins the nation’s economy and the very survival of its population remains almost entirely exposed. This creates a strategic paradox where the government may be able to survive an attack but would be left to preside over a collapsed and non-functioning society.
The National Policy Framework: Awareness Without Action?
For over two decades, the U.S. government has been formally aware of the EMP threat, yet this awareness has not translated into meaningful, large-scale protective action for the civilian sector.
- The EMP Commission: Established by Congress in 2001, the Commission to Assess the Threat to the United States from Electromagnetic Pulse Attack produced a series of authoritative, unclassified reports until it was disbanded in 2017.25 Its comprehensive work, involving top scientists and national security experts, unequivocally identified EMP as an existential threat and documented in detail the severe vulnerabilities of the nation’s critical infrastructures.42 The Commission’s core finding was stark: the civilian electric grid is the nation’s Achilles’ heel, and its collapse would be catastrophic.26 Despite its repeated and urgent warnings, the Commission’s recommendations for hardening were largely ignored.
- Executive Order 13865: In March 2019, the threat was officially codified at the highest level with the signing of Executive Order 13865, “Coordinating National Resilience to Electromagnetic Pulses”.7 This order designated EMP as a national security threat and tasked the Department of Homeland Security (DHS), through its Cybersecurity and Infrastructure Security Agency (CISA), with leading a coordinated federal effort to improve resilience.7 The policy established three primary goals: improve risk awareness, enhance protection capabilities, and promote effective response and recovery efforts.7
- The Policy-Action Gap: Despite the work of the EMP Commission and the issuance of a formal Executive Order, tangible progress on hardening the civilian grid remains minimal.6 The federal approach has been one of publishing voluntary guidelines, promoting information sharing, and encouraging public-private partnerships.7 This strategy has failed because of a fundamental misalignment of incentives. Private utility companies are primarily responsible to shareholders and are regulated by commissions that prioritize low consumer electricity rates. Investing billions of dollars to mitigate a low-probability, high-consequence event like EMP offers no short-term return on investment and would necessitate politically unpopular rate hikes.29 Without a federal mandate that either compels the expenditure or provides the funding, the economic and political incentives for private infrastructure owners are strongly aligned with inaction, leaving the nation’s most critical lifeline perilously exposed.
Current State of Readiness: A Dangerous Disparity
The current state of U.S. EMP readiness is dangerously bifurcated. Protections are in place for the continuity of the government, but not for the continuity of society.
- Military and Government Hardening: A legacy of Cold War planning, key strategic military assets are hardened against EMP. This includes nuclear command, control, and communications (NC3) systems, strategic bomber and missile forces, and critical facilities like NORAD’s Cheyenne Mountain Complex.34 Likewise, continuity-of-government (COG) facilities and transportation assets, such as Air Force One, are shielded to ensure that the national command authority can survive an attack and direct the military response.29
- Civilian Vulnerability: This military hardening exists in a vacuum of civilian vulnerability. The very society and industrial base that these military forces are meant to protect are completely soft targets.25 The U.S. Air Force, for example, is inextricably dependent on the civilian power grid and communications networks to operate its domestic bases.34 This creates a “Hollow Government” scenario: in the aftermath of a HEMP attack, the President may be able to issue orders from a hardened command post, but there will be no functioning civilian economy, no industrial base to mobilize, no transportation network to move resources, and no informed populace to direct. The government would survive as a hollowed-out entity, isolated from and unable to assist the collapsed nation it is meant to lead.
The Verdict: What We Are Ready For vs. What We Are Not
A candid assessment of the nation’s readiness reveals a clear and alarming picture.
- Ready For: The United States is prepared, at a strategic command level, to withstand an EMP attack. The government can likely maintain continuity and control over its nuclear deterrent and other strategic military forces. There is a high degree of threat awareness and a solid policy framework within the national security community.
- Not Ready For: The United States is catastrophically unprepared for the societal consequences of an EMP attack. The nation is not ready for a long-term, nationwide power outage and the subsequent, inevitable collapse of all life-sustaining critical services. We are not ready to feed, water, or provide medical care for our population in a post-EMP environment. The current “bottom-up” strategy, which relies on the voluntary and economically disincentivized actions of private infrastructure owners, has proven to be a failure and has left the American people unacceptably vulnerable to what is arguably the single greatest threat to their survival and way of life.6
A National Resilience Strategy: Recommendations for Action
Addressing the profound threat of EMP requires a fundamental shift from a strategy of awareness and voluntary guidance to one of decisive, coordinated action. True national resilience cannot be achieved through half-measures. It demands a multi-layered approach that combines top-down federal mandates for critical infrastructure with bottom-up preparedness at the community and individual levels. The following recommendations provide a framework for such a strategy.
National-Level Mitigation
The federal government must lead this effort with the urgency the threat demands. The reliance on market forces and voluntary measures has failed; legislative and executive action is now required.
- Mandate and Fund Grid Hardening: Congress must pass binding legislation, such as the long-proposed SHIELD Act, that directs the Federal Energy Regulatory Commission (FERC) to implement mandatory standards for EMP and GMD protection of the bulk electric grid.25 These standards must, at a minimum, require the installation of proven protective technologies, such as neutral current blockers or Faraday cage-like shielding for all EHV transformers, and the deployment of multi-stage, fast-acting surge protection devices on all critical SCADA and control systems.17 To overcome the economic disincentives, this mandate should be paired with a federal cost-sharing program or tax incentives to assist utilities with the capital investment.
- Establish a Strategic Transformer Reserve: The Department of Energy, in partnership with DHS, should be directed and funded to establish a national Strategic Transformer Reserve. This would involve procuring and strategically stockpiling a sufficient number of spare EHV transformers and other critical long-lead-time grid components. This reserve is the only practical way to break the “Recovery Paradox” and enable a grid restoration timeline measured in months rather than many years.
- Invest in Resilient Grid Technologies: Federal research and development funding should be prioritized for next-generation grid technologies that are inherently more resilient to EMP. This includes funding for the development and deployment of hardened microgrids that can “island” from the main grid to power critical local facilities, as well as research into solid-state transformers, which are less vulnerable to GIC effects than traditional designs.37
- Restructure Public-Private Partnerships: The role of CISA should be elevated from an advisory and information-sharing body to a central planning and operational coordination hub for infrastructure protection.7 This should involve conducting mandatory, integrated vulnerability assessments with private sector owners and developing joint, actionable plans for hardening critical nodes across all 16 infrastructure sectors.
Community and Individual Preparedness
In the event of a catastrophic HEMP attack, federal and state assistance may be unavailable for an extended period. Survival and recovery will therefore depend heavily on the resilience and preparedness of local communities and individual citizens.
State and Local Government Actions
- Promote and Protect Local Microgrids: State and municipal governments should identify critical local facilities—such as hospitals, water treatment plants, emergency operations centers, and food distribution hubs—and incentivize the development of EMP-protected microgrids to ensure their continued operation during a prolonged blackout.35
- Establish Community Stockpiles: Local emergency management agencies should plan for and maintain strategic stockpiles of essential resources, including fuel for emergency vehicles and generators, non-perishable food, and medical supplies, sufficient to sustain the community for at least 30-90 days.35
- Integrate EMP into Emergency Planning: EMP and long-term grid-down scenarios must be incorporated into all state and local emergency preparedness plans, training, and exercises.35 This will ensure that first responders and community leaders are prepared to operate in an environment without power, communications, or modern technology.
Individual and Family Preparedness
- Build a Comprehensive Emergency Kit: Every household must take responsibility for its own immediate survival. This requires building and maintaining a disaster kit with a minimum of 30 days of essential supplies, including non-perishable food, a method to purify water (at least one gallon per person per day), all necessary medications, and a robust first-aid kit.5
- Protect Critical Personal Electronics: Individuals can safeguard small, vital electronic devices by storing them in a makeshift Faraday cage. This can be constructed from a conductive metal container, such as a galvanized steel trash can or a military surplus ammo can, with the electronics placed inside a non-conductive inner box (e.g., cardboard) to prevent contact with the metal shell. Multiple nested layers of shielding (e.g., wrapping a device in aluminum foil, placing it in a box, and then wrapping the box in more foil) can also be effective.48 Key items to protect include a battery-powered or hand-crank shortwave radio for receiving information, a small solar charger, and a USB drive containing copies of important personal documents.
- Develop a Resilient Family Plan: Families must develop and practice an emergency plan that does not rely on modern technology.52 This should include pre-determined rally points, non-electronic communication methods, and a plan for shelter. Acquiring practical skills such as basic first aid, gardening and food preservation, and manual tool use will be invaluable.
- Foster Community Alliances: In a prolonged societal collapse, the most resilient unit will not be the isolated individual but the organized community. Building strong relationships with neighbors and forming community alliances for mutual security, resource pooling, and problem-solving is one of the most critical preparedness steps an individual can take.47
Table 3: Multi-Level Mitigation and Preparedness Framework
| Stakeholder Level | Pre-Event Mitigation (Hardening & Stockpiling) | Immediate Response (First 72 Hours) | Long-Term Recovery (Post-72 Hours) |
| Federal Government | Mandate & fund grid hardening (EHV transformers, SCADA). Establish Strategic Transformer Reserve. Fund R&D in resilient grid tech. | Maintain continuity of government (COG). Command & control strategic military assets. Assess nationwide damage via hardened assets. | Coordinate international aid. Manage Strategic Transformer Reserve deployment. Prioritize restoration of critical national infrastructure. |
| State & Local Government | Develop EMP-protected microgrids for critical facilities. Maintain community stockpiles of fuel, food, water. Integrate EMP into all emergency plans & exercises. | Activate Emergency Operations Centers (on backup power). Establish public information points (non-electronic). Secure critical infrastructure (water plants, hospitals). | Manage local resource distribution. Coordinate volunteer and mutual aid groups. Facilitate phased restoration of local services. |
| Critical Infrastructure Owners (Utilities, Telecom, etc.) | Install EHV transformer protection (neutral blockers). Deploy E1/E2 surge protection. Maintain “black start” capability and fuel reserves. | Execute damage assessment protocols. Isolate damaged grid sections to prevent cascading. Attempt to establish “islands” of power around critical loads. | Coordinate with government on restoration priorities. Manage repair/replacement of damaged equipment. Re-establish network connectivity incrementally. |
| Individuals & Families | Assemble 30+ day supply kit (food, water, medicine). Protect vital small electronics in a Faraday cage. Develop a tech-free family emergency plan. | Shelter in place; assess immediate safety. Conserve resources (water, food, fuel). Establish contact with neighbors for mutual support. | Implement long-term survival skills (water purification, food production). Participate in community security & organization. Assist in local recovery efforts. |
If you find this post useful, please share the link on Facebook, with your friends, etc. Your support is much appreciated and if you have any feedback, please email me at in**@*********ps.com. Please note that for links to other websites, we are only paid if there is an affiliate program such as Avantlink, Impact, Amazon and eBay and only if you purchase something. If you’d like to directly donate to help fund our continued report, please visit our donations page.
Sources Used
- Electromagnetic pulse – Wikipedia, accessed September 28, 2025, https://en.wikipedia.org/wiki/Electromagnetic_pulse
- Electromagnetic Pulse (EMP) | Anne Arundel County Government, accessed September 28, 2025, https://www.aacounty.org/emergency-management/disaster-preparedness/hazards/electromagnetic-pulse-emp
- Electromagnetic Pulse and Geomagnetic Disturbance – CISA, accessed September 28, 2025, https://www.cisa.gov/resources-tools/programs/electromagnetic-pulse-and-geomagnetic-disturbance
- Electromagnetic pulse – CT.gov, accessed September 28, 2025, https://portal.ct.gov/-/media/CSC/1_Dockets-medialibrary/1_MEDIA_DO500_600/DO512/MotiontoReopenCT4RT/polzin-2-of-3.pdf
- What Would It Take To Survive an EMP Attack? – Mind Matters, accessed September 28, 2025, https://mindmatters.ai/2022/03/what-would-it-take-to-survive-an-emp-attack/
- THE THREAT WE FAIL TO ADDRESS | The American Legion, accessed September 28, 2025, https://www.legion.org/information-center/news/magazine/2018/april/the-threat-we-fail-to-address
- Electromagnetic Pulse – CISA, accessed September 28, 2025, https://www.cisa.gov/topics/risk-management/electromagnetic-pulse
- Nuclear electromagnetic pulse – Wikipedia, accessed September 28, 2025, https://en.wikipedia.org/wiki/Nuclear_electromagnetic_pulse
- Office of Radiation … – Washington State Department of Health, accessed September 28, 2025, https://doh.wa.gov/sites/default/files/legacy/Documents/Pubs/320-090_elecpuls_fs.pdf
- The Early-Time (E1) High-Altitude Electromagnetic Pulse (HEMP) and Its Impact on the US Power Grid – Stanford, accessed September 28, 2025, http://large.stanford.edu/courses/2019/ph241/rogers1/docs/meta-r-320.pdf
- Electromagnetic Pulse or EMP and the E1, E2 and E3 Components …, accessed September 28, 2025, https://www.empshield.com/electromagnetic-pulse-or-emp-and-the-e1-e2-and-e3-components/
- 11.3 HEMP (High-altitude Electromagnetic Pulse) – Fiveable, accessed September 28, 2025, https://fiveable.me/electromagnetic-interference-and-compatibility/unit-11/hemp-high-altitude-electromagnetic-pulse/study-guide/8nVEzYT8oMwpRKUF
- What is High-Altitude Electromagnetic Pulse (HEMP)? – TSS USA Manufacturing, accessed September 28, 2025, https://www.tssusamfg.com/what-is-high-altitude-electromagnetic-pulse/
- What are the Three Types of EMP? – Noordin Etech, accessed September 28, 2025, https://www.emcnoordin.com/what-are-the-three-types-of-emp/
- Electromagnetic Pulses – Six Common Misconceptions – Domestic Preparedness, accessed September 28, 2025, https://www.domesticpreparedness.com/commentary/electromagnetic-pulses-six-common-misconceptions
- System Electromagnetic Pulse Survivability and Hardening – DAU, accessed September 28, 2025, https://www.dau.edu/sites/default/files/Migrated/CopDocuments/EMP%20Overview.pdf
- Secure the Grid Coalition – Department of Energy, accessed September 28, 2025, https://www.energy.gov/sites/default/files/2022-11/Comment%20-%20Secure%20the%20Grid%20Coalition%20-%20SEAB-Oct%202022.pdf
- Why does EMP fry electronics, and does turning them off actually protects them (like they do in movies)? : r/askscience – Reddit, accessed September 28, 2025, https://www.reddit.com/r/askscience/comments/3vxup1/why_does_emp_fry_electronics_and_does_turning/
- How exactly does an EMP damage electronics? : r/askscience – Reddit, accessed September 28, 2025, https://www.reddit.com/r/askscience/comments/lqtxz/how_exactly_does_an_emp_damage_electronics/
- EMP: Threats and Protection Strategies | Electromagnetic Interference Class Notes, accessed September 28, 2025, https://fiveable.me/electromagnetic-interference-and-compatibility/unit-11
- Improvised Electromagnetic Pulse Devices – Weapons Effects and Countermeasures, accessed September 28, 2025, https://www.defensemedianetwork.com/stories/improvised-electromagnetic-pulse-devices-4/
- Non-Nuclear EMP: Automating the Military May Prove a Real Threat, accessed September 28, 2025, https://irp.fas.org/agency/army/mipb/1997-1/merkle.htm
- Non-nuclear EMP Weapons – How Electromagnetic Pulse Attacks …, accessed September 28, 2025, https://science.howstuffworks.com/e-bomb3.htm
- Non-Nuclear EMP Weapons: How to Deter China’s Growing Military Might?, accessed September 28, 2025, https://nationalinterest.org/blog/buzz/non-nuclear-emp-weapons-how-deter-chinas-growing-military-might-184713
- EMP Commission History | High Frontier, accessed September 28, 2025, http://highfrontier.org/emp-commission-history/
- Report of the Commission to Assess the Threat … – EMP Commission, accessed September 28, 2025, https://www.empcommission.org/docs/A2473-EMP_Commission-7MB.pdf
- Electromagnetic Pulse: Effects on the U.S. Power Grid, accessed September 28, 2025, https://legacy-assets.eenews.net/open_files/assets/2011/08/26/document_gw_02.pdf
- US electricity grid still vulnerable to electromagnetic pulses | Physics Today – AIP Publishing, accessed September 28, 2025, https://pubs.aip.org/physicstoday/article/62/9/24/895534/US-electricity-grid-still-vulnerable-to
- Robert A McEntee-A1.docx – Department of Energy, accessed September 28, 2025, https://energy.gov/sites/default/files/2021-06/Robert%20A%20McEntee-A1.docx
- Fiber optic communications link performance in EMP and intense light transient environments. Interim report – OSTI, accessed September 28, 2025, https://www.osti.gov/biblio/7227846
- The interaction of Electromagnetic Pulse with buried Armoured Fiber Optic Cables, accessed September 28, 2025, https://www.researchgate.net/publication/351485580_The_interaction_of_Electromagnetic_Pulse_with_buried_Armoured_Fiber_Optic_Cables
- TDCC’s Security Protection Measures Against Electromagnetic Pulse Attack, accessed September 28, 2025, https://www.tdcc.com.tw/portal/en/publication/business/4028979683acb40f0183ca6ec1210019?eMNum=264
- The Electromagnetic Pulse (EMP) Bomb and Its Risks on Islamic Banks: A Case Study of Islamic Banks Operating in Jordan – ResearchGate, accessed September 28, 2025, https://www.researchgate.net/publication/388619717_The_Electromagnetic_Pulse_EMP_Bomb_and_Its_Risks_on_Islamic_Banks_A_Case_Study_of_Islamic_Banks_Operating_in_Jordan
- USAF Role in the Electromagnetic Pulse Vulnerability of the United States Critical Infrastructure > Air University (AU) > Wild Blue Yonder, accessed September 28, 2025, https://www.airuniversity.af.edu/Wild-Blue-Yonder/Articles/Article-Display/Article/3674518/usaf-role-in-the-electromagnetic-pulse-vulnerability-of-the-united-states-criti/
- Imagining the U.S. Without Power: A Dual-World EMP Exercise – Domestic Preparedness, accessed September 28, 2025, https://domesticpreparedness.com/articles/imagining-the-u-s-without-power-a-dual-world-emp-exercise
- Is it just me or is the EMP the most underutilized bomb in science fiction? – Reddit, accessed September 28, 2025, https://www.reddit.com/r/SciFiConcepts/comments/rlyjv7/is_it_just_me_or_is_the_emp_the_most/
- The Electromagnetic Threat to the United States: Recommendations for Consequence Management – DTIC, accessed September 28, 2025, https://apps.dtic.mil/sti/trecms/pdf/AD1164809.pdf
- High altitude electromagnetic pulse (EMP) attack scenario against the USA, accessed September 28, 2025, https://nuclearweaponsedproj.mit.edu/high-altitude-electromagnetic-pulse-emp-attack-scenario-against-usa/
- About the Electromagnetic Pulse (EMP) Mitigation Research Area – Resilient Energy Systems – Sandia National Laboratories, accessed September 28, 2025, https://www.sandia.gov/resilience/about-the-electromagnetic-pulse-emp-mitigation-research-area/
- Electromagnetic Pulse (EMP) Protection and Resilience Guidelines for Critical Infrastructure Equipment – CISA, accessed September 28, 2025, https://www.cisa.gov/sites/default/files/publications/19_0307_CISA_EMP-Protection-Resilience-Guidelines.pdf
- Commission to Assess the Threat to the United States from Electromagnetic Pulse (EMP) Attack, accessed September 28, 2025, https://www.empcommission.org/
- Reports | EMPCommission.org, accessed September 28, 2025, https://www.empcommission.org/reports.php
- Report of the Commission to Assess the Threat to the United States from Electromagnetic Pulse (EMP) Attack, accessed September 28, 2025, https://www.empcommission.org/docs/empc_exec_rpt.pdf
- Coordinating National Resilience to Electromagnetic Pulses – Federal Register, accessed September 28, 2025, https://www.federalregister.gov/documents/2019/03/29/2019-06325/coordinating-national-resilience-to-electromagnetic-pulses
- Electromagnetic Pulse Shielding Mitigations – Homeland Security, accessed September 28, 2025, https://www.dhs.gov/sites/default/files/2022-09/22_0902_st_emp_mitigation_best_practices.pdf
- National Preparedness | FEMA.gov, accessed September 28, 2025, https://www.fema.gov/emergency-managers/national-preparedness
- EMP Attack Prepping Guide – Checklist, FAQs, Novel – Treehouse Dad, accessed September 28, 2025, https://treehousedad.com/emp-attack-prepper-guide/
- www.jackery.com, accessed September 28, 2025, https://www.jackery.com/blogs/knowledge/how-to-protect-electronics-from-emp-electromagnetic-pulse#:~:text=An%20EMP%20can%20impact%20vulnerable,protect%20your%20electronics%20from%20EMP.
- How to Protect Electronics From EMP Threats – ShopSolar.com, accessed September 28, 2025, https://shopsolarkits.com/blogs/learning-center/how-to-protect-electronics-from-emp-threats
- EMP Survival: How to Protect Electronics In a Free DIY Faraday Cage – YouTube, accessed September 28, 2025, https://www.youtube.com/watch?v=3WTHk-tfT3I
- 3 Easy Ways to Protect Electronics from an Electromagnetic Pulse – wikiHow, accessed September 28, 2025, https://www.wikihow.com/Protect-Electronics-from-an-Electromagnetic-Pulse
- Are You Ready? An In-Depth Guide to Citizen … – Ready.gov, accessed September 28, 2025, https://www.ready.gov/sites/default/files/2021-11/are-you-ready-guide.pdf
- Preparedness Emergency Preparedness – Anchorage – Muni.org, accessed September 28, 2025, https://www.muni.org/Departments/OEM/Prepared/pages/default.aspx